The form of the spherical harmonics

Including normalization the spherical harmonics are

$$Y_0^0 = \frac{1}{\sqrt{4\pi}} \qquad Y_2^0 = \sqrt{\frac{5}{16\pi}} \left(3\cos^2\theta - 1 \right)$$

$$Y_1^0 = \sqrt{\frac{3}{4\pi}} \cos\theta \qquad Y_2^{\pm 1} = \sqrt{\frac{15}{8\pi}} \sin\theta \cos\theta e^{\pm i\phi}$$

$$Y_1^{\pm 1} = \sqrt{\frac{3}{8\pi}} \sin\theta e^{\pm i\phi} \qquad Y_2^2 = \sqrt{\frac{15}{32\pi}} \sin^2\theta e^{\pm 2i\phi}$$

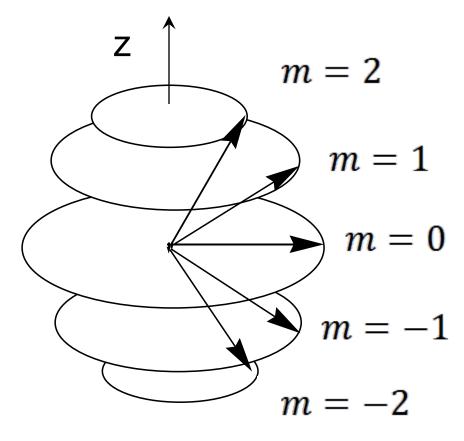
The form commonly used to represent p and d orbitals are linear combinations of these functions

Solutions to the 3-D rotational hamiltonian

- There are two quantum numbers
 - Is the total angular momentum quantum number m is the z-component of the angular momentum
- The spherical harmonics called Y_{em} are functions whose probability |Y_{em}|² has the well known shape of the s, p and d orbitals etc.

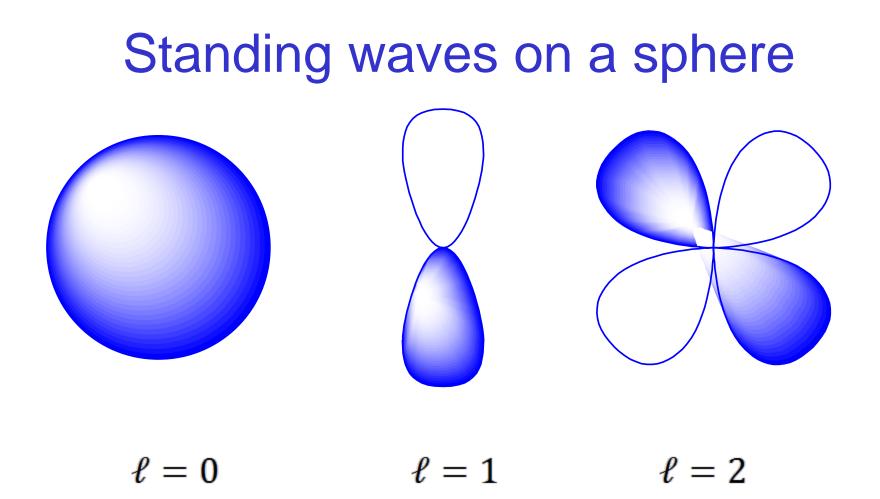
$$l = 0$$
 is s , m = 0
 $l = 1$ is p , m = -1, 0, 1
 $l = 2$ is d , m = -2, -1, 0, 1, 2
 $l = 3$ is f , m = -3, -2, -1, 0, 1, 2, 3
etc.

Space quantization in 3D



 $\ell = 2$

- Specification of the azimuthal quantum number m_z implies that the angular momentum about the z-axis is $J_z = hm$.
- This implies a fixed orientation between the total angular momentum and the z component.
- The x and y components cannot be known due to the Uncertainty principle.



These are the spherical harmonics Y_{lm} , which are solutions of the angular Schrodinger equation.

Orthogonality of wavefunctions

- Ignoring normalization we have:
- s 1
- p $\cos\theta$, $\sin\theta\cos\phi$, $\sin\theta\sin\phi$
- d 1/2(3cos²θ 1), cos²θcos2φ , cos²θsin2φ , cosθsinθcosφ , cosθsinθsinφ
- The differential angular element is $\sin\theta d\theta d\phi/4\pi$
- The limits $\theta = 0$ to π and $\phi = 0$ to 2π .
- The angular wavefunctions are orthogonal.

Orthogonality of wavefunctions

- For the theta integrals we can use the substitution
- $x = \cos\theta$ and $dx = -\sin\theta d\theta$
- For example, for s and p-type rotational wave functions we have

$$< s \mid p > \infty \int_{0}^{\pi} \cos\theta \sin\theta \, d\theta = \int_{1}^{-1} x \, dx = \frac{x^{2}}{2} = \frac{1}{2} = \frac{1}{2} - \frac{1}{2} = 0$$