Spherical Polar Coordinates




The volume element in spherical
polar coordinates

To solve the Schrodinger equation we need to
Integrate of all space. This is the same thing
as performing a volume integral. The volume
element is:

dV = r?dr sin6d8 d¢

This integrates to 4x, which is the
normalization constant. 4r stearadians also
gives the solid angle of a sphere.



The wavefunctions of a rigid rotor are
called spherical harmonics

The solutions to the 0 and ¢ equation (angular part)
are the spherical harmonics Y(0,¢ )= ©(0)®(})
Separation of variables using the functions ®(0)

and @(¢) allows solution of the rotational wave
equation.
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We can obtain a 0 and ¢ equation from the above
equation.



Separation of variables

The spherical harmonics arise from the product
of ®® after substituting Y = OO0
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Multiply through by sin?6/h?.
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Separation of variables

The operators in variables 0 and ¢ operate on function
® and @, respectively, so we can write
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When we divide by Y = ®®, we obtain
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Now, these equations can be separated using
separation constant m?.
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The ® equation

We have already seen the solution to the ¢ equation
from the example of rotation in two dimensions.

which has solutions
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Now that we have defined the values of m as positive
and negative integers, the 0 equation is also defined.



Convert the 6-equation into the LeGendre polynomial
generating eguation
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+((1 - x2)£_2_mz) P(x)=0
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we find,

B =h*({+1)
Using the product rule to take the derivative with respect to X,
and making the substitution
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The solution of 6 equation gives
Legendre polynomials

Substitute x = cosO and the equation becomes:

L 02P P m?
(1—-x*) = 2x——+ ﬁ_1—x2 P=0

The solution requires that f = ¢(¢ + 1)with £=0,1,2..
Where £ is the rotational quantum number.

The azimuthal quantum number is m.

The magnitude of m| = £. The solutions are Legendre
polynomials

Py(x)=1 P,(x)=1/2 (3x? - 1)

P, (x)=x P,(x)=1/2 (5x3 - 3x)



The spherical harmonics as solutions to
the rotational hamiltonian

The spherical harmonics are the product of the

solutions to the 0 and ¢ equations. With norm-
-alization these solutions are

Y(6, ) = Ny P, (cos 6)e'™?

The m quantum number corresponds the
z component of angular momentum.
The normalization constant is

(26 +1)(¢ — |m|)

N, =
tm A(£ + |m|)
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The form of the spherical
harmonics

Including normalization the spherical harmonics are

Yy = 1 Y, = 1271 (BCos 0 — 1)

YO «/ COSO Y = \/ %i sindcosfe*"
Y=, /3 singet? /15 2if
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The form commonly used to represent p and d
orbitals are linear combinations of these functions
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