Spherical Polar Coordinates

The volume element in spherical polar coordinates

To solve the Schrodinger equation we need to integrate of all space. This is the same thing as performing a volume integral. The volume element is:

$$
d V=r^{2} d r \sin \theta d \theta d \phi
$$

This integrates to 4π, which is the normalization constant. 4π stearadians also gives the solid angle of a sphere.

The wavefunctions of a rigid rotor are called spherical harmonics

The solutions to the θ and ϕ equation (angular part) are the spherical harmonics $\mathrm{Y}(\theta, \phi)=\Theta(\theta) \Phi(\phi)$ Separation of variables using the functions $\Theta(\theta)$ and $\Phi(\phi)$ allows solution of the rotational wave equation.
$-\hbar^{2}\left(\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} Y+\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta} Y\right)\right)=\beta Y$

We can obtain a θ and ϕ equation from the above equation.

Separation of variables

The spherical harmonics arise from the product of $\Theta \Phi$ after substituting $Y=\Theta \Phi$

$$
-\hbar^{2}\left(\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} \Phi \Theta+\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta} \Phi \Theta\right)\right)=\beta \Phi \Theta
$$

Multiply through by $\sin ^{2} \theta / h^{2}$.

$$
\frac{\partial^{2}}{\partial \phi^{2}} \Phi \Theta+\sin \theta \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta} \Phi \Theta\right)=-\sin ^{2} \theta \frac{\beta}{\hbar^{2}} \Phi \Theta
$$

Separation of variables

The operators in variables θ and ϕ operate on function Θ and Φ, respectively, so we can write

$$
\Theta \frac{\partial^{2}}{\partial \phi^{2}} \Phi+\Phi \sin \theta \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta} \Theta\right)=-\sin ^{2} \theta \frac{\beta}{\hbar^{2}} \Phi \Theta
$$

When we divide by $\mathrm{Y}=\Theta \Phi$, we obtain

$$
\frac{1}{\Phi} \frac{\partial^{2}}{\partial \phi^{2}} \Phi+\frac{1}{\Theta} \sin \theta \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta} \Theta\right)+\sin ^{2} \theta \frac{\beta}{\hbar^{2}}=0
$$

Now, these equations can be separated using separation constant m^{2}.

$$
\frac{1}{\Phi} \frac{\partial^{2}}{\partial \phi^{2}} \Phi=-\mathrm{m}^{2} \quad \frac{1}{\Theta} \sin \theta \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta} \Theta\right)+\sin ^{2} \theta \frac{\beta}{\hbar^{2}}=\mathrm{m}^{2}
$$

The Φ equation

We have already seen the solution to the ϕ equation from the example of rotation in two dimensions.

$$
\frac{\partial^{2}}{\partial \phi^{2}} \Phi=-\mathrm{m}^{2} \Phi
$$

which has solutions

$$
\Phi=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{\mathrm{im} \mathrm{\phi}}, \mathrm{~m}= \pm 1, \pm 2, \pm 3, \ldots
$$

Now that we have defined the values of m as positive and negative integers, the θ equation is also defined.

Convert the θ-equation into the LeGendre polynomial generating equation

$$
\frac{1}{\Theta} \sin \theta \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta} \Theta\right)+\frac{1}{\Theta} \sin ^{2} \theta \frac{\beta}{\hbar^{2}} \Theta=\mathrm{m}^{2}
$$

Can be written as

$$
\sin \theta \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta} \Theta\right)+\sin ^{2} \theta \frac{\beta}{\hbar^{2}} \Theta-\mathrm{m}^{2} \Theta=0
$$

Let $\mathrm{x}=\cos \theta$.

$$
\begin{gathered}
\frac{\partial}{\partial x}=\frac{\partial}{\partial \cos \theta}=\frac{\partial \theta}{\partial \cos \theta} \frac{\partial}{\partial \theta} \\
\frac{\partial \theta}{\partial \cos \theta}=\frac{-1}{\sin \theta}
\end{gathered}
$$

Therefore

$$
\frac{\partial}{\partial \theta}=-\sqrt{\left(1-x^{2}\right)} \frac{\partial}{\partial x}
$$

$$
\begin{array}{r}
\sqrt{\left(1-x^{2}\right)}\left(-\sqrt{\left(1-x^{2}\right)} \frac{\partial}{\partial x}\right)\left(\sqrt{\left(1-x^{2}\right)}\left(-\sqrt{\left(1-x^{2}\right)}\right) \frac{\partial}{\partial x} \mathrm{P}(\mathrm{x})\right) \\
+\left(\left(1-x^{2}\right) \frac{\beta}{\hbar^{2}}-\mathrm{m}^{2}\right) \mathrm{P}(\mathrm{x})=0 \\
\left(1-x^{2}\right) \frac{\partial}{\partial x}\left(\left(1-x^{2}\right) \frac{\partial}{\partial x} \mathrm{P}(\mathrm{x})\right)+\left(\left(1-x^{2}\right) \frac{\beta}{\hbar^{2}}-\mathrm{m}^{2}\right) \mathrm{P}(\mathrm{x})=0 \\
\frac{\partial}{\partial x}\left(\left(1-x^{2}\right) \frac{\partial}{\partial x} \mathrm{P}(\mathrm{x})\right)+\left(\frac{\beta}{\hbar^{2}}-\frac{\mathrm{m}^{2}}{\left(1-x^{2}\right)}\right) \mathrm{P}(\mathrm{x})=0
\end{array}
$$

we find,

$$
\beta=\hbar^{2} \ell(\ell+1)
$$

Using the product rule to take the derivative with respect to x, and making the substitution

$$
\left(1-x^{2}\right) \frac{\partial^{2} P}{\partial x^{2}}-2 x \frac{\partial P}{\partial x}+\left(\ell(\ell+1)-\frac{m^{2}}{1-x^{2}}\right) P=0
$$

The solution of θ equation gives Legendre polynomials

Substitute $x=\cos \theta$ and the equation becomes:

$$
\left(1-x^{2}\right) \frac{\partial^{2} P}{\partial x^{2}}-2 x \frac{\partial P}{\partial x}+\left(\beta-\frac{m^{2}}{1-x^{2}}\right) P=0
$$

The solution requires that $\beta=\ell(\ell+1)$ with $\ell=0,1,2$.. Where ℓ is the rotational quantum number.
The azimuthal quantum number is m.
The magnitude of $|m| \leq \ell$. The solutions are Legendre polynomials
$P_{0}(x)=1$

$$
\begin{aligned}
& P_{2}(x)=1 / 2\left(3 x^{2}-1\right) \\
& P_{3}(x)=1 / 2\left(5 x^{3}-3 x\right)
\end{aligned}
$$

$P_{1}(x)=x$

The spherical harmonics as solutions to the rotational hamiltonian

The spherical harmonics are the product of the solutions to the θ and ϕ equations. With norm--alization these solutions are

$$
Y(\theta, \phi)=N_{\ell, m} P_{\ell}^{m}(\cos \theta) e^{i m \phi}
$$

The m quantum number corresponds the z component of angular momentum.
The normalization constant is

$$
N_{\ell, m}=\sqrt{\frac{(2 \ell+1)(\ell-|m|)}{4 \pi(\ell+|m|)}}
$$

The form of the spherical harmonics

Including normalization the spherical harmonics are

$$
\begin{array}{ll}
Y_{0}^{0}=\frac{1}{\sqrt{4 \pi}} & Y_{2}^{0}=\sqrt{\frac{5}{16 \pi}}\left(3 \cos ^{2} \theta-\right. \\
Y_{1}^{0}=\sqrt{\frac{3}{4 \pi}} \cos \theta & Y_{2}^{ \pm 1}=\sqrt{\frac{15}{8 \pi}} \sin \theta \cos \theta \epsilon \\
Y_{1}^{ \pm 1}=\sqrt{\frac{3}{8 \pi}} \sin \theta e^{ \pm i \phi} Y_{2}^{2}=\sqrt{\frac{15}{32 \pi}} \sin ^{2} \theta e^{ \pm 2 i \phi}
\end{array}
$$

The form commonly used to represent p and d orbitals are linear combinations of these functions

