Particle location in free space is not defined

$\Psi(\mathrm{x})=\sin (k x)$

Superposition wave with momentum hk and $\mathrm{h}(1.1 \mathrm{k})$

$$
\Psi(\mathrm{x})=\sin (k x) \text { and } \Psi(\mathrm{x})=\sin (1.1 k x)
$$

Envelope frequency at $\left(\mathrm{k}_{2}-\mathrm{k}_{1}\right) / 2$

$$
\Psi(\mathrm{x})=\sin (k x)+\sin (1.1 k x)
$$

Beat frequency at $\left(k_{2}+k_{1}\right) / 2$

$$
\Psi(\mathrm{x})=\sin (k x)+\sin (1.1 k x)
$$

add more frequencies to make bandwidth $\Delta \mathrm{K}$ $\Psi(\mathrm{x})=\sin (0.9 k x)+\sin (k x)+\sin (1.1 k x)$

As the $\Delta \mathrm{k}$ bandwidth increases the position in Δx-space becomes more defined

$$
\Psi(\mathrm{x})=\sin (0.8 k x)+\sin (0.9 k x)+\sin (k x)+\sin (1.1 k x)+\sin (1.2 k x)
$$

As the $\Delta \mathrm{K}$ bandwidth increases the position in Δx-space becomes more defined

Fourier transform related pairs

Position and momentum are related by a Fourier transform.

$$
\Delta x \Delta p \geq \hbar / 2
$$

Time and energy are related by a Fourier transform.

There is an uncertainty relationship for both of these related pairs. Thus, for time and energy we have

$$
\Delta t \Delta E \geq \hbar / 2
$$

Gaussian Functions

A Gaussian function has the form $\exp \left\{-\alpha\left(x-x_{0}\right)^{2}\right\}$. The Gaussian indicated is centered about the point x_{0}. The Fourier transform of a Gaussian in x-space is a Gaussian in k-space. Since $p=\dagger k$ we also call this momentum space. The figure shows the inverse relationship.

