Particle location in free space is not defined $\Psi(x) = \sin(kx)$

Superposition wave with momentum hk and h(1.1k)

 $\Psi(\mathbf{x}) = \sin(kx)$ and $\Psi(\mathbf{x}) = \sin(1.1kx)$

Amplitude

position x

Envelope frequency at $(k_2 - k_1)/2$ $\Psi(x) = \sin(kx) + \sin(1.1kx)$

add more frequencies to make bandwidth Δk $\Psi(x) = \sin(0.9kx) + \sin(kx) + \sin(1.1kx)$

As the Δk bandwidth increases the position in Δx -space becomes more defined $\Psi(x) = \sin(0.8kx) + \sin(0.9kx) + \sin(kx) + \sin(1.1kx) + \sin(1.2kx)$

As the Δk bandwidth increases the position in Δx -space becomes more defined

Fourier transform related pairs

Position and momentum are related by a Fourier transform.

$\Delta x \Delta p \ge \hbar/2$

Time and energy are related by a Fourier transform.

There is an uncertainty relationship for both of these related pairs. Thus, for time and energy we have

† _____ F

$\Delta t \Delta E \geq \hbar/2$

Gaussian Functions

A Gaussian function has the form $\exp\{-\alpha(x - x_0)^2\}$. The Gaussian indicated is centered about the point x_0 . The Fourier transform of a Gaussian in x-space is a Gaussian in k-space. Since $p = \hbar k$ we also call this momentum space. The figure shows the inverse relationship.

