$$-\frac{\hbar^2}{2\mu R^2}\frac{\partial^2}{\partial\phi^2}\Phi = E\Phi$$

$$-\frac{\hbar^2}{2\mu R^2}\frac{\partial^2}{\partial\phi^2}\Phi=E\Phi$$

$$\Phi = \frac{1}{\sqrt{2\pi}} e^{im\phi}$$

$$m = 0, \pm 1, \pm 2, \pm 3, \dots$$

$$-\frac{\hbar^2}{2\mu R^2}\frac{\partial^2}{\partial\phi^2}\Phi=E\Phi$$

$$\Phi = \frac{1}{\sqrt{2\pi}} e^{im\phi}$$

$$m = 0, \pm 1, \pm 2, \pm 3, \dots$$

$$E = \frac{h^2 m^2}{8\pi^2 \mu R^2}$$

$$-\frac{\hbar^2}{2\mu R^2}\frac{\partial^2}{\partial\phi^2}\Phi = E\Phi$$

$$\Phi = \frac{1}{\sqrt{2\pi}} e^{im\phi}$$

$$E = \frac{h^2 m^2}{8\pi^2 \mu R^2}$$

---- m = 0

$$-\frac{\hbar^2}{2\mu R^2}\frac{\partial^2}{\partial\phi^2}\Phi=E\Phi$$

$$\Phi = \frac{1}{\sqrt{2\pi}} e^{im\phi}$$

$$E = \frac{h^2 m^2}{8\pi^2 \mu R^2}$$

$$---- m = \pm 1$$

 $---- m = 0$

 $----- m = \pm 2$

 $----- m = \pm 1$

m = 0

$$-\frac{\hbar^2}{2\mu R^2}\frac{\partial^2}{\partial\phi^2}\Phi=E\Phi$$

$$\Phi = \frac{1}{\sqrt{2\pi}} e^{im\phi}$$

$$E = \frac{h^2 m^2}{8\pi^2 \mu R^2}$$

$$-\frac{\hbar^2}{2\mu R^2} \frac{\partial^2}{\partial \phi^2} \Phi = E\Phi$$

$$m = \pm 3$$

$$\Phi = \frac{1}{\sqrt{2\pi}} e^{im\phi}$$

$$m = \pm 2$$

$$m = \pm 1$$

$$E = \frac{\hbar^2 m^2}{8\pi^2 \mu R^2}$$

$$m = 0$$

Benzene molecular orbitals

We can construct molecular orbitals of benzene using the six electrons in π orbitals

Free electron model applied to benzene

The π system approximates circular electron path.

 $m = 0, \pm 1, \pm 2, \pm 3, \dots$

 $-\frac{\hbar^2}{2\mu R^2}\frac{\partial^2}{\partial\phi^2}\Phi = E\Phi \qquad \Phi = \frac{1}{\sqrt{2\pi}}e^{im\phi}$

Energy levels calculated by particle on a circle model

The energies for the circle model differ in that they come in pairs. Since the quantum numbers can be both positive and negative:

$$m = 0, \pm 1, \pm 2, \pm 3, \dots$$

The energies can be calculated using:

$$E = \frac{h^2 m^2}{8\pi^2 \mu R^2}$$

The analogy with the particle in a box is quite strong except for this pairing of the levels (above m = 0). The length L is replaced by πR .

The perimeter model applied to porphyrin

The aromatic ring has 18 electrons. The π system approximates circular electron path.

Porphine orbitals

Nodes in Porphine orbitals

The four orbital model represents the highest occupied and lowest unoccupied MOs of porphyrins

The transitions from ground state π orbitals a_{1u} and a_{2u} to excited state π^* orbitals e_q mix by configuration interaction

Two electronic transitions $e_g \pi$ are observed. One is very strong (B or Soret) and the other is weak (Q). M_1 M_{2} The transition moments are: $M_{\rm B} = M_1 + M_2$ $M_{\odot} = M_1 - M_2 \approx 0$ $a_{2u}\pi$ $a_{1u}\pi$

Absorption spectra for MbCO and deoxy Mb

The spectrum of the heme has two bands. The B band or Soret band is allowed and therefore intense. The Q band is forbidden. It is observed because of vibronic coupling with the Soret band.