
Optical relaxation is negligible in NMR
For molecular absorption in the visible and ultraviolet the
emission of light either by spontaneous (fluorescence) or 
stimulated (lasing) processes is an important mechanism
for relaxation of the excited state. Neither of these 
mechanisms is important in NMR. 

The Einstein relations tell us that the spontaneous emission
Decreases as the third power of frequency. Thus, in the radio-
Frequency range spontaneous emission becomes truly tiny.

For an isolated dipole the rate of relaxation can be 
Calculated based on the Fermi Golden Rule:

𝑊𝑊 =
𝜇𝜇0𝛾𝛾2ℏ𝜔𝜔0
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This rate is approximately W = 10-21 s-1, which is so small
that we can neglect it. 

Even stimulated emission is extremely small in NMR such 
that the mechanisms of relaxation are all non-radiative. The
mechanisms of nuclear spin relaxation involve coupling of
the spin with the surroundings, which can mean the
environment (called the lattice for historical reasons) and
other spins.



The relaxation Hamiltonian 
We can include the terms leading to relaxation conceptually
In the Hamiltonian as follows.
We can represent the fluctuating terms in the Hamiltonian 
as Hlocal(t) such that the total Hamiltonian is

ℋ = ℋ𝑧𝑧 + ℋ𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡
The local can be decomposed into isotropic and anisotropic 
contributions

ℋ𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡 = ℋ𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑖𝑖𝑖𝑖𝑙𝑙 𝑡𝑡 + ℋ𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑙𝑙𝑎𝑎𝑖𝑖𝑖𝑖𝑙𝑙(𝑡𝑡)

Finally the anisotropic contributions consist of both 
longitudinal and transverse terms 

ℋ𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑙𝑙𝑎𝑎𝑖𝑖𝑖𝑖𝑙𝑙 𝑡𝑡 = ℋ𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙

𝑙𝑙𝑎𝑎𝑖𝑖𝑖𝑖𝑙𝑙 𝑡𝑡 + ℋ𝑡𝑡𝑡𝑡𝑙𝑙𝑎𝑎𝑖𝑖
𝑙𝑙𝑎𝑎𝑖𝑖𝑖𝑖𝑙𝑙(𝑡𝑡)



The relationship between molecular 
rotation and the correlation time

Spontaneous relaxation of nuclear spin orientations is 
extremely slow. almost zero. T1 relaxation is caused by 
transient magnetic fields caused by molecular motion.
T1 relaxation is optimal if molecular rotations also occur
at the Larmour precession frequency. In non-viscous liquids 
molecular rotation frequencies are several orders of 
magnitude higher than ω0. Therefore, only a small fraction 
of the moleculars in the sample have the correct frequency
To relax the spins. T1 relaxation is very inefficient under these 
circumstances. For larger molecules and more viscous 
solutions molecular motions become slower and T1 
Becomes shorter.. At some point the average molecular 
motions become slower than ω0, and T1 becomes longer again



The correlation time
The trend for T1 is shown in the Figure below. T2 slows
As the molecular rotations slow. Thus, larger molecules 
And more viscous solutions lead to smaller T2 values.

http://www.chem.wisc.edu/areas/reich/nmr/08-tech-01-relax.htm
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The Solomon equations are the rate equations that describe 
the various populations of these states. For example, the aa 
population equation is:
𝑑𝑑𝑃𝑃𝛼𝛼𝛼𝛼
𝑑𝑑𝑡𝑡

= − 𝑊𝑊𝐼𝐼 + 𝑊𝑊𝑆𝑆 + 𝑊𝑊2 𝑃𝑃𝛼𝛼𝛼𝛼 + 𝑊𝑊𝐼𝐼𝑃𝑃𝛽𝛽𝛼𝛼 + 𝑊𝑊𝑆𝑆𝑃𝑃𝛼𝛼𝛽𝛽 + 𝑊𝑊2𝑃𝑃𝛽𝛽𝛽𝛽 + 𝐾𝐾

where 𝑃𝑃𝛾𝛾𝛾𝛾 is the population of the spin state |𝛾𝛾𝛾𝛾 >. K is a 
constant chosen to ensure that the population returns to the 
equilibrium value 𝑃𝑃𝛼𝛼𝛼𝛼0 . At equilibrium

𝑑𝑑𝑃𝑃𝛼𝛼𝛼𝛼
𝑑𝑑𝑡𝑡

= 0

𝐾𝐾 = 𝑊𝑊𝐼𝐼 + 𝑊𝑊𝑆𝑆 + 𝑊𝑊2 𝑃𝑃𝛼𝛼𝛼𝛼0 −𝑊𝑊𝐼𝐼𝑃𝑃𝛽𝛽𝛼𝛼
0 −𝑊𝑊𝑆𝑆𝑃𝑃𝛼𝛼𝛽𝛽

0 −𝑊𝑊2𝑃𝑃𝛽𝛽𝛽𝛽
0

Rate equations for relaxation



Treating the difference in population relative to the equilibrium 
value as:

∆𝑃𝑃𝛾𝛾𝛾𝛾= 𝑃𝑃𝛾𝛾𝛾𝛾 − 𝑃𝑃𝛾𝛾𝛾𝛾
0

𝑑𝑑∆𝑃𝑃𝛼𝛼𝛼𝛼
𝑑𝑑𝑡𝑡 = − 𝑊𝑊𝐼𝐼 + 𝑊𝑊𝑆𝑆 + 𝑊𝑊2 ∆𝑃𝑃𝛼𝛼𝛼𝛼 + 𝑊𝑊𝐼𝐼∆𝑃𝑃𝛽𝛽𝛼𝛼 + 𝑊𝑊𝑆𝑆∆𝑃𝑃𝛼𝛼𝛽𝛽 + 𝑊𝑊2∆𝑃𝑃𝛽𝛽𝛽𝛽

Similar equations can be written for the other three states:

𝑑𝑑∆𝑃𝑃𝛼𝛼𝛽𝛽
𝑑𝑑𝑡𝑡 = − 𝑊𝑊𝐼𝐼 + 𝑊𝑊𝑆𝑆 + 𝑊𝑊0 ∆𝑃𝑃𝛼𝛼𝛽𝛽 + 𝑊𝑊0∆𝑃𝑃𝛽𝛽𝛼𝛼 + 𝑊𝑊𝐼𝐼∆𝑃𝑃𝛽𝛽𝛽𝛽 + 𝑊𝑊𝑆𝑆∆𝑃𝑃𝛼𝛼𝛼𝛼

𝑑𝑑∆𝑃𝑃𝛽𝛽𝛼𝛼
𝑑𝑑𝑡𝑡 = − 𝑊𝑊𝐼𝐼 + 𝑊𝑊𝑆𝑆 + 𝑊𝑊0 ∆𝑃𝑃𝛽𝛽𝛼𝛼 + 𝑊𝑊0∆𝑃𝑃𝛼𝛼𝛽𝛽 + 𝑊𝑊𝐼𝐼∆𝑃𝑃𝛼𝛼𝛼𝛼 + 𝑊𝑊𝑆𝑆∆𝑃𝑃𝛽𝛽𝛽𝛽

𝑑𝑑∆𝑃𝑃𝛽𝛽𝛽𝛽
𝑑𝑑𝑡𝑡 = − 𝑊𝑊𝐼𝐼 + 𝑊𝑊𝑆𝑆 + 𝑊𝑊2 ∆𝑃𝑃𝛽𝛽𝛽𝛽 + 𝑊𝑊𝐼𝐼∆𝑃𝑃𝛼𝛼𝛽𝛽 + 𝑊𝑊𝑆𝑆∆𝑃𝑃𝛽𝛽𝛼𝛼 + 𝑊𝑊2∆𝑃𝑃𝛼𝛼𝛼𝛼

Rate equations in terms of population



These population equations can be cast in terms of the 
magnetization of a two-spin system as follows:

𝑑𝑑∆𝐼𝐼𝑧𝑧(𝑡𝑡)
𝑑𝑑𝑡𝑡

= − 𝑊𝑊0 + 2𝑊𝑊𝐼𝐼 + 𝑊𝑊2 ∆𝐼𝐼𝑧𝑧 𝑡𝑡 − 𝑊𝑊2 −𝑊𝑊0 ∆𝑆𝑆𝑧𝑧(𝑡𝑡)

𝑑𝑑∆𝑆𝑆𝑧𝑧(𝑡𝑡)
𝑑𝑑𝑡𝑡

= − 𝑊𝑊0 + 2𝑊𝑊𝑆𝑆 + 𝑊𝑊2 ∆𝑆𝑆𝑧𝑧 𝑡𝑡 − 𝑊𝑊2 −𝑊𝑊0 ∆𝐼𝐼𝑧𝑧(𝑡𝑡)

∆𝐼𝐼𝑧𝑧 𝑡𝑡 = 𝐼𝐼𝑧𝑧 (𝑡𝑡) − 𝐼𝐼𝑧𝑧0

𝐼𝐼𝑧𝑧0 is the equilbirium value of the Iz operator.

Rate equations in terms of magnetization



We can define the quantities
𝜌𝜌𝐼𝐼 = 𝑊𝑊0 + 2𝑊𝑊𝐼𝐼 + 𝑊𝑊2
𝜌𝜌𝑆𝑆 = 𝑊𝑊0 + 2𝑊𝑊𝑆𝑆 + 𝑊𝑊2

𝜎𝜎𝐼𝐼𝑆𝑆 = 𝑊𝑊2 −𝑊𝑊0

Where 𝜌𝜌𝐼𝐼 and 𝜌𝜌𝑆𝑆 are the autorelaxations of spins I and S and 
𝜎𝜎𝐼𝐼𝑆𝑆 is the cross relaxation. Using these definitions we can 
recast the magnetization equations so that it is evident that 
they comprise a pair of coupled first order differential 
equations.

𝑑𝑑∆𝐼𝐼𝑧𝑧(𝑡𝑡)
𝑑𝑑𝑡𝑡

= −𝜌𝜌𝐼𝐼∆𝐼𝐼𝑧𝑧 𝑡𝑡 − 𝜎𝜎𝐼𝐼𝑆𝑆∆𝑆𝑆𝑧𝑧(𝑡𝑡)
𝑑𝑑∆𝑆𝑆𝑧𝑧(𝑡𝑡)
𝑑𝑑𝑡𝑡

= −𝜌𝜌𝑆𝑆∆𝑆𝑆𝑧𝑧 𝑡𝑡 − 𝜎𝜎𝐼𝐼𝑆𝑆∆𝐼𝐼𝑧𝑧(𝑡𝑡)

The Solomon equations



The Solomon equations can be extended to N non-interacting 
spins

𝑑𝑑∆𝐼𝐼𝑘𝑘𝑧𝑧(𝑡𝑡)
𝑑𝑑𝑡𝑡

= −𝜌𝜌𝑘𝑘∆𝐼𝐼𝑘𝑘𝑧𝑧 𝑡𝑡 −�
𝑗𝑗≠𝑘𝑘

𝜎𝜎𝑘𝑘𝑗𝑗∆𝑆𝑆𝑗𝑗𝑧𝑧(𝑡𝑡)

�
𝑗𝑗

𝜌𝜌𝑗𝑗𝑘𝑘 = 𝜌𝜌𝑘𝑘

The sum of the individual magnetizations gives the net 
magnetization vector equation.

𝑑𝑑∆𝑴𝑴𝒛𝒛(𝑡𝑡)
𝑑𝑑𝑡𝑡

= −𝑹𝑹∆𝑴𝑴𝒛𝒛 𝑡𝑡

Extension to N coupled spins



In which R is a NxN matrix with elements 
𝑅𝑅𝑘𝑘𝑘𝑘 = 𝜌𝜌𝑘𝑘
𝑅𝑅𝑗𝑗𝑘𝑘 = 𝜎𝜎𝑗𝑗𝑘𝑘

and ∆𝑴𝑴𝒛𝒛 𝑡𝑡 is a column vector with dimension Nx1 and 
elements ∆𝐼𝐼𝑘𝑘𝑧𝑧(𝑡𝑡). The magnetization decays exponentially due 
both to the autorelaxation and cross relaxation terms, which 
gives rise to magnetization transfer.

∆𝑴𝑴𝒛𝒛 𝑡𝑡 = e−𝑹𝑹𝑡𝑡∆𝑴𝑴𝒛𝒛 0

The solution can be expressed as a dimilarity transfer form 

∆𝑴𝑴𝒛𝒛 𝑡𝑡 = 𝑼𝑼−𝟏𝟏e−𝑫𝑫𝑫𝑫𝑼𝑼∆𝑴𝑴𝒛𝒛 0

𝑹𝑹 = 𝑼𝑼−𝟏𝟏𝑫𝑫𝑼𝑼

Solution of the eigenvalue problem



The matrices are given below and the evaluation of the 
eigenvalues 𝜆𝜆± gives the provides the solution to the Solomon 
equations

𝑹𝑹 = 𝑼𝑼−𝟏𝟏𝑫𝑫𝑼𝑼

𝑹𝑹 =
𝜌𝜌𝐼𝐼 𝜎𝜎𝐼𝐼𝑆𝑆
𝜎𝜎𝐼𝐼𝑆𝑆 𝜌𝜌𝑆𝑆

𝑫𝑫 = 𝜆𝜆+ 0
0 𝜆𝜆−

𝜆𝜆± =
1
2

(𝜌𝜌𝐼𝐼 + 𝜌𝜌𝑆𝑆) ± (𝜌𝜌𝐼𝐼 − 𝜌𝜌𝑆𝑆)2+4𝜎𝜎𝐼𝐼𝑆𝑆2

Solution of the eigenvalue problem



The eigenvalues 𝜆𝜆± are substituted back into the eigenvector
equation to obtain the the U matrix.

𝑼𝑼 =

−𝜎𝜎𝐼𝐼𝑆𝑆

(𝜌𝜌𝐼𝐼 − 𝜆𝜆+)2+4𝜎𝜎𝐼𝐼𝑆𝑆2

−𝜎𝜎𝐼𝐼𝑆𝑆

(𝜌𝜌𝐼𝐼 − 𝜆𝜆−)2+4𝜎𝜎𝐼𝐼𝑆𝑆2

𝜌𝜌𝐼𝐼 − 𝜆𝜆+

(𝜌𝜌𝐼𝐼 − 𝜆𝜆+)2+4𝜎𝜎𝐼𝐼𝑆𝑆2
𝜎𝜎𝐼𝐼𝑆𝑆

𝜌𝜌𝐼𝐼 − 𝜆𝜆−

(𝜌𝜌𝐼𝐼 − 𝜆𝜆−)2+4𝜎𝜎𝐼𝐼𝑆𝑆2

Finally we write the equation for the time-dependent net
magnetization relaxation:

∆𝑀𝑀𝐼𝐼 𝑡𝑡
∆𝑀𝑀𝑆𝑆 𝑡𝑡

= 𝑎𝑎𝐼𝐼𝐼𝐼(𝑡𝑡) 𝑎𝑎𝐼𝐼𝑆𝑆(𝑡𝑡)
𝑎𝑎𝑆𝑆𝐼𝐼(𝑡𝑡) 𝑎𝑎𝑆𝑆𝑆𝑆(𝑡𝑡)

∆𝑀𝑀𝐼𝐼 0
∆𝑀𝑀𝑆𝑆 0

The similarity transform
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