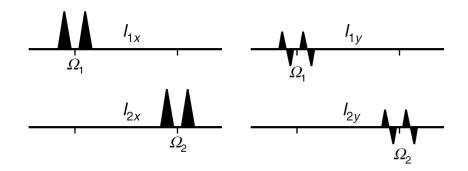
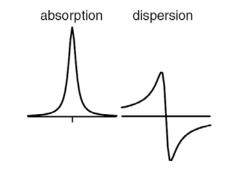
<u>spin 1</u>	<u>spin 2</u>	description
I _{1x}	<i>I</i> _{2x}	x-magnetization
<i>I</i> _{1y}	<i>I</i> _{2y}	y-magnetization
I _{1z}	l _{2z}	z-magnetization

In this formulation the spins are both named I, which may be useful for homonuclear spin-spin coupling. For example, H-H spin coupling or ¹³C-¹³C coupling. However, heteronuclear coupling is also common in NMR.

<u>spin 1</u>	<u>spin 2</u>	description
l _x	S _x	x-magnetization
l _y	Sy	y-magnetization
l _z	Sz	z-magnetization

The representation shown here is equivalent to that shown on the previous slide. In fact, the S spin does not have to be a different type of nucleus and some books prefer to use I and S rather than using the I_1 and I_2 of the previous slide.

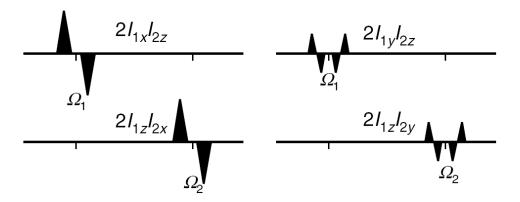

<u>spin 1</u>	<u>spin 2</u>	description
I _{1x}	I _{2x}	x-magnetization
<i>I</i> _{1y}	<i>I</i> _{2y}	y-magnetization
I _{1z}	l _{2z}	z-magnetization


If spins 1 and 2 are coupled then the spectra consists of two doublets. Therefore I_{1x} is further identified with the two lines of the doublet of spin 1 and I_{2x} with the doublet of spin 2.

$$\rightarrow J_{12} \rightarrow J_{12} \rightarrow$$

 I_{1x} represents in-phase magnetization of spin 1. Inphase magnetization implies both lines of the doublet have the same lineshape and sign. Magnetization along the y-axis gives rise to a different lineshape.

Magnetization along x gives rise to an absorption mode lineshape. Magnetization along y gives rise to a dispersion mode lineshape.



Anti-phase magnetization

The two lines of each doublet represent the α and β spin states of the coupled spin. In an anti-phase multiplet the coupled lines have different signs. Anti-phase operators take into account the α and β spin states spin states of the coupled spins.

For example the operator $2I_{1x}I_{2z}$ describes the magnetization on spin 1 that is anti-phase with respect to the coupling of spin 2.

<u>spin 1</u>	<u>spin 2</u>	description
I _{1x}	I _{2x}	x-magnetization
<i>I</i> _{1y}	<i>I</i> _{2y}	y-magnetization
l _{1z}	l _{2z}	z-magnetization
2 <i>I</i> _{1x} <i>I</i> _{2z}	$2I_{1z}I_{2x}$	anti-phase along x
21 _{1y} 1 _{2z}	2 <i>I</i> _{1z} <i>I</i> _{2y}	anti-phase along y

non observable (multiple quantum coherences)

$$2I_{1x}I_{2y}$$
, $2I_{1y}I_{2x}$, $2I_{1x}I_{2x}$, $2I_{1y}I_{2y}$

<u>spin 1</u>	<u>spin 2</u>	description
l _x	S _x	x-magnetization
<i>I</i> y	Sy	y-magnetization
l _z	Sz	z-magnetization
$2I_{\rm x}S_{\rm z}$	$2I_zS_x$	anti-phase along x
$2I_yS_z$	$2I_zS_y$	anti-phase along y

non observable (multiple quantum coherences)

$$2I_xS_y$$
, $2I_yS_x$, $2I_xS_x$, $2I_yS_y$