Preparation of the spin echo

Now that we understand the fundamentals of the product operator, we apply this idea to the spin echo:

Spin echo

$$90^{\circ}$$
 (x) $\frac{a}{}$ delay $\tau \frac{b}{}$ 180° (x) $\frac{e}{}$ delay $\tau \frac{f}{}$ acquire

First, we prepare with a $\pi/2$ pulse:

$$I_z \xrightarrow{\omega_1 t_p I_x} -I_y$$
 (a)

Then the spins evolve in the x,y plane: $H_{free} = \Omega I_z$

$$-I_{y} \xrightarrow{\Omega \tau I_{z}} -\cos \Omega \tau I_{y} + \sin \Omega \tau I_{x} \qquad (b)$$

Application of the π -pulse

90° (x)
$$\frac{a}{}$$
 delay τ $\frac{b}{}$ 180° (x) $\frac{e}{}$ delay τ $\frac{f}{}$ acquire

Apply the π -pulse
$$H_{pulse,x} = \omega_1 I_x$$

$$-\cos \Omega \tau I_y + \sin \Omega \tau I_x \xrightarrow{\omega_1 t_p I_x} \sigma(e)$$

$$-\cos\Omega\tau I_{y}\xrightarrow{\omega_{1}t_{p}I_{x}}-\cos\Omega\tau\cos\omega_{1}t_{p}I_{y}-\cos\Omega\tau\sin\omega_{1}t_{p}I_{z}$$

Since the flip angle here is $\omega_1 t_p = \pi$ the second term on the right goes to zero and the first term changes sign (cos π = -1). Such that:

that:
$$-\cos \Omega \tau I_y \xrightarrow{\pi I_x} \cos \Omega \tau I_y$$

Treatment of I_y and I_x terms

90° (x)
$$\frac{a}{}$$
 delay $\tau \stackrel{b}{-}$ 180° (x) $\frac{e}{}$ delay $\tau \stackrel{f}{-}$ acquire
$$-\cos \Omega \tau I_y + \sin \Omega \tau I_x \stackrel{\omega_1 t_p I_x}{\longrightarrow} \sigma(e)$$

$$-\cos \Omega \tau I_y \stackrel{\pi I_x}{\longrightarrow} \cos \Omega \tau I_y$$

The second term ($\sin\Omega\tau$ I_x) on the left is unchanged because it is not affected by a rotation about x. Therefore after the 180° pulse the following is obtained:

$$-\cos\Omega\tau I_y + \sin\Omega\tau I_x \xrightarrow{\pi I_x} \cos\Omega\tau I_y + \sin\Omega\tau I_x$$

Evolution following the π -pulse

$$90^{\circ}$$
 (x) $\frac{a}{}$ delay $\tau \frac{b}{}$ 180° (x) $\frac{e}{}$ delay $\tau \frac{f}{}$ acquire

$$-\cos\Omega\tau I_y + \sin\Omega\tau I_x \xrightarrow{\pi I_x} \cos\Omega\tau I_y + \sin\Omega\tau I_x$$

Evolution (e) involves separate treatment of each term on the right:

$$\cos \Omega \tau I_y \xrightarrow{\Omega \tau I_z} \cos \Omega \tau \cos \Omega \tau I_y - \sin \Omega \tau \cos \Omega \tau I_x$$

$$\cos \Omega \tau I_{y} \longrightarrow \cos \Omega \tau \cos \Omega \tau I_{y} - \sin \Omega \tau \cos \Omega \tau I_{x}$$

$$H_{free} = \Omega I_{z}$$

$$x \sin \Omega \tau I_{x} \longrightarrow \cos \Omega \tau \sin \Omega \tau I_{x} + \sin \Omega \tau \sin \Omega \tau I_{y}$$

$$x = \int_{-\gamma}^{\gamma} z \int_{-\gamma}^{\gamma}$$

Refocusing of the spins

$$90^{\circ}$$
 (x) $\frac{a}{}$ delay $\tau \frac{b}{}$ 180° (x) $\frac{e}{}$ delay $\tau \frac{f}{}$ acquire

Collecting the terms in I_x and I_y gives us:

$$(\cos \Omega \tau \cos \Omega \tau + \sin \Omega \tau \sin \Omega \tau) I_y + \\ (\cos \Omega \tau \sin \Omega \tau - \sin \Omega \tau \cos \Omega \tau) I_x$$

The terms multiplying I_x goes to 0 and the terms multiplying I_y goes to 1 because of the identity: $\cos^2\theta + \sin^2\theta = 1$

Therefore:

$$I_z \xrightarrow{90^{\circ}(x)-\tau-180^{\circ}-(x)-\tau} I_y$$

Product operators vs. vector

Spin echo

$$90^{\circ}$$
 (x) $\frac{a}{}$ delay $\tau \frac{b}{}$ 180° (x) $\frac{e}{}$ delay $\tau \frac{f}{}$ acquire

Vector

Product operator

$$I_z \xrightarrow{90^\circ(x)-\tau-180^\circ-(x)-\tau} I_v$$