The Rotating Frame Approximation

It we work in the rotating frame we can remove the complexity of time-dependence from the problem. The operator that removes the time dependence is:

$$
U=\exp \left\{i \omega_{r f} I_{z} t\right\}
$$

Applying this operator we find
\mathcal{H}

$$
=-\omega_{0} I_{z}
$$

$$
+\omega_{1} \exp \left\{i \omega_{r f} I_{z} t\right\}\left[\begin{array}{c}
I_{x} \cos \left(\omega_{r f} t+\phi\right) \\
+I_{y} \sin \left(\omega_{r f} t+\phi\right)
\end{array}\right] \exp \left\{-i \omega_{r f} I_{z} t\right\}
$$

$$
+\exp \left\{i \omega_{r f} I_{z} t\right\} i \omega_{r f} I_{z} \exp \left\{-i \omega_{r f} I_{z} t\right\}
$$

Rotation matrices in NMR

There is a convention regarding directions of rotation that is specific to the experimental geometry that is used in NMR spectrometers. We can write the general rotation operator as:

$$
\exp \left(i \theta I_{v}\right) I_{u} \exp \left(-i \theta I_{v}\right)
$$

To yield the following rotation table:

x	I_{x}	$\begin{aligned} & I_{y} \cos (\theta) \\ & -I_{z} \sin (\theta) \end{aligned}$	$\begin{aligned} & I_{x} \cos (\theta) \\ & +I_{y} \sin (\theta) \end{aligned}$
y	$\begin{aligned} & I_{y} \cos (\theta) \\ & +I_{z} \sin (\theta) \end{aligned}$	I_{y}	$\begin{aligned} & I_{y} \cos (\theta) \\ & -I_{x} \sin (\theta) \end{aligned}$
z	$\begin{aligned} & I_{z} \cos (\theta) \\ & -I_{y} \sin (\theta) \end{aligned}$	$\begin{aligned} & I_{z} \cos (\theta) \\ & +I_{y} \sin (\theta) \end{aligned}$	I_{z}

Properties of Rotations Operators

A key relation used in many of the operator equations is

$$
\mathbf{U} f(\mathbf{A}) \mathbf{U}^{-1}=\mathrm{f}\left(\mathbf{U} \mathbf{f} \mathbf{A U}^{-1}\right)
$$

$f(A)$ is an arbitrary function of operator A. We can expand $f\left(\right.$ UAU $\left.^{-1}\right)$ as a Taylor series.

$$
\mathrm{R}_{\phi}(\alpha, \theta)=\mathrm{R}_{\mathrm{z}}(\phi) \mathrm{R}_{\mathrm{y}}(\theta) \mathrm{R}_{\mathrm{z}}(\alpha) \mathrm{R}_{\mathrm{y}}^{-1}(\theta) \mathrm{R}_{\mathrm{z}}^{-1}(\phi)
$$

Properties of Rotations Operators

$$
\begin{gathered}
\mathrm{R}_{\phi}(\alpha, \theta)=\mathrm{R}_{\mathrm{z}}(\phi) \mathrm{R}_{\mathrm{y}}(\theta) \mathrm{R}_{\mathrm{z}}(\alpha) \mathrm{R}_{\mathrm{y}}^{-1}(\theta) \mathrm{R}_{\mathrm{z}}^{-1}(\phi) \\
=\mathrm{R}_{\mathrm{z}}(\phi) \exp \left[-\mathrm{i} \alpha \mathrm{R}_{\mathrm{y}}(\theta) \mathrm{I}_{\mathrm{z}} \mathrm{R}_{\mathrm{y}}^{-1}(\theta)\right] \mathrm{R}_{\mathrm{z}}^{-1}(\phi) \\
=\mathrm{R}_{\mathrm{z}}(\phi) \exp \left[-\mathrm{i} \alpha\left(\mathrm{I}_{\mathrm{z}} \cos \theta+\mathrm{I}_{\mathrm{x}} \sin \theta\right)\right] \mathrm{R}_{\mathrm{z}}^{-1}(\phi) \\
=\exp \left[-\mathrm{i} \alpha \mathrm{R}_{\mathrm{z}}(\phi)\left(\mathrm{I}_{\mathrm{z}} \cos \theta+\mathrm{I}_{\mathrm{x}} \sin \theta\right) \mathrm{R}_{\mathrm{z}}^{-1}(\phi)\right] \\
=\exp \left[-\mathrm{i} \alpha\left(\mathrm{I}_{\mathrm{z}} \cos \theta+\mathrm{I}_{\mathrm{x}} \cos \phi \sin \theta+\mathrm{I}_{\mathrm{y}} \sin \phi \sin \theta\right)\right] \\
=\exp [-\mathrm{i} \alpha \mathbf{n} \cdot \mathrm{I}]
\end{gathered}
$$

Rotation Operators in Matrix Form

The operator for a rotation about an arbitrary angle, α, can be represented as a series of rotations about the y and z axes. The five rotations used in this derivation are not independent of one another. The rotation $\mathrm{R}_{\phi}(\alpha, \theta)$ can be reduced to three independent rotations using the Euler method for three dimensional rotation.

$$
\mathrm{R}_{\phi}(\alpha)=\left[\begin{array}{cc}
\cos \left(\frac{\alpha}{2}\right) & -\mathrm{i} \sin \left(\frac{\alpha}{2}\right) \mathrm{e}^{-\mathrm{i} \phi} \\
-\mathrm{i} \sin \left(\frac{\alpha}{2}\right) \mathrm{e}^{\mathrm{i} \phi} & \cos \left(\frac{\alpha}{2}\right)
\end{array}\right]
$$

Rotation Operators in Matrix Form

The angle ϕ determines the axis for rotation perpendicular to the z-axis. $\phi=0^{\circ}$ signifies a rotation about the x axis. The inverse is:

$$
\left(\mathrm{R}_{\phi}(\alpha)\right)^{-1}=\left[\begin{array}{ll}
\cos \left(\frac{\alpha}{2}\right) & \operatorname{isin}\left(\frac{\alpha}{2}\right) \\
\operatorname{isin}\left(\frac{\alpha}{2}\right) & \cos \left(\frac{\alpha}{2}\right)
\end{array}\right]
$$

Application to pulsed NMR

The simplest NMR experiment consists of a single pulse followed by aquisition of the FID.

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{x}}(\alpha) \mathrm{I}_{\mathrm{z}} \mathrm{R}_{\mathrm{x}}^{-1}(\alpha)=\frac{1}{2}\left[\begin{array}{cc}
\mathrm{c} & -\mathrm{is} \\
-\mathrm{is} & \mathrm{c}
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
\mathrm{c} & \mathrm{is} \\
\mathrm{is} & \mathrm{c}
\end{array}\right] \\
&= \frac{1}{2}\left[\begin{array}{cc}
\mathrm{c} & \text { is } \\
-\mathrm{is} & -\mathrm{c}
\end{array}\right]\left[\begin{array}{cc}
\mathrm{c} & \mathrm{is} \\
\mathrm{is} & \mathrm{c}
\end{array}\right] \\
&=\frac{1}{2}\left[\begin{array}{cc}
\mathrm{c}^{2}-\mathrm{s}^{2} & 2 \mathrm{ics} \\
-2 \mathrm{ics} & \mathrm{~s}^{2}-\mathrm{c}^{2}
\end{array}\right] \\
&=\frac{1}{2}\left[\begin{array}{cc}
\cos \alpha & \mathrm{i} \sin \alpha \\
-\mathrm{i} \sin \alpha & -\cos \alpha
\end{array}\right] \\
&= \mathrm{I}_{\mathrm{z}} \cos \alpha-\mathrm{I}_{\mathrm{y}} \sin \alpha
\end{aligned}
$$

Example of the 180° and 90° Pulse

The Pauli matrices are used here. For example for a 180° pulse we have

$$
\mathrm{R}_{\mathrm{x}}(\pi) \mathrm{I}_{\mathrm{z}} \mathrm{R}_{\mathrm{x}}^{-1}(\pi)=\frac{1}{2}\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]=-\frac{1}{2}\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]=-\mathrm{I}_{\mathrm{z}}
$$

For a 90° pulse we have

$$
\mathrm{R}_{\mathrm{x}}(\pi / 2) \mathrm{I}_{\mathrm{z}} \mathrm{R}_{\mathrm{x}}^{-1}(\pi / 2)=\frac{1}{2}\left[\begin{array}{cc}
0 & \mathrm{i} \\
-\mathrm{i} & 0
\end{array}\right]=-\frac{1}{2}\left[\begin{array}{cc}
0 & -\mathrm{i} \\
\mathrm{i} & 0
\end{array}\right]=-\mathrm{I}_{\mathrm{y}}
$$

Thus, after a 90° pulse the magnetization will be along $-I_{y}$. The spins will evolve under the Zeeman Hamiltonian as

$$
\mathrm{H}_{\mathrm{z}}=\left(\omega_{0}-\omega_{\mathrm{rf}}\right) \mathrm{I}_{\mathrm{z}}=\Omega \mathrm{I}_{\mathrm{z}}
$$

Evolution following the 90° Pulse

We can introduce time-dependence using

$$
\begin{gathered}
\sigma(\mathrm{t})=\exp \left(-\mathrm{i} \mathrm{H}_{\mathrm{z}} \mathrm{t}\right) \sigma(0) \exp \left(\mathrm{iH}_{\mathrm{z}} \mathrm{t}\right) \\
\sigma(\mathrm{t})=\exp \left(-\mathrm{i} \Omega \mathrm{I}_{\mathrm{z}} \mathrm{t}\right) \sigma(0) \exp \left(\mathrm{i} \Omega \mathrm{I}_{\mathrm{z}} \mathrm{t}\right) \\
\sigma(\mathrm{t})=\mathbf{U} \sigma(0) \mathbf{U}^{-1} \\
\mathbf{U}=\exp \left(-\mathrm{i} \Omega \mathrm{I}_{\mathrm{z}} \mathrm{t}\right)=\left[\begin{array}{cc}
\exp (-\mathrm{i} \Omega \mathrm{t} / 2) & 0 \\
0 & \exp (\mathrm{i} \Omega \mathrm{t} / 2)
\end{array}\right]
\end{gathered}
$$

If we perform the matrix manipulations for $\sigma(0)=-I_{y}$, we find

$$
\begin{aligned}
& \sigma(\mathrm{t}) \\
& =-\frac{1}{2}\left[\begin{array}{cc}
\exp (-\mathrm{i} \Omega \mathrm{t} / 2) & 0 \\
0 & \exp (\mathrm{i} \Omega \mathrm{t} / 2)
\end{array}\right]\left[\begin{array}{cc}
0 & -\mathrm{i} \\
\mathrm{i} & 0
\end{array}\right]\left[\begin{array}{cc}
\exp (\mathrm{i} \Omega \mathrm{t} / 2) & 0 \\
0 & \exp (-\mathrm{i} \Omega \mathrm{t} / 2)
\end{array}\right]
\end{aligned}
$$

Evolution following the 90° Pulse

$$
\begin{aligned}
& \sigma(\mathrm{t}) \\
& =-\frac{1}{2}\left[\begin{array}{cc}
0 & -\mathrm{iexp}(-\mathrm{i} \Omega \mathrm{t} / 2) \\
\operatorname{iexp}(\mathrm{i} \Omega \mathrm{t} / 2) & 0
\end{array}\right]\left[\begin{array}{cc}
\exp (\mathrm{i} \Omega \mathrm{t} / 2) & 0 \\
0 & \exp (-\mathrm{i} \Omega \mathrm{t} /
\end{array}\right. \\
& \sigma(\mathrm{t})=\frac{1}{2}\left[\begin{array}{cc}
0 & \mathrm{iexp}(-\mathrm{i} \Omega \mathrm{t}) \\
-\mathrm{iexp}(\mathrm{i} \Omega \mathrm{t}) & 0
\end{array}\right] \\
& \sigma(\mathrm{t})=\frac{1}{2}\left[\begin{array}{cc}
0 & \mathrm{i}[\cos (\Omega \mathrm{t})-\mathrm{i} \sin (\Omega \mathrm{t})] \\
-\mathrm{i}[\cos (\Omega \mathrm{t})+\mathrm{i} \sin (\Omega \mathrm{t})] & 0
\end{array}\right]
\end{aligned}
$$

Evolution following the 90° Pulse

$$
\begin{gathered}
\sigma(\mathrm{t})=\frac{1}{2}\left[\begin{array}{cc}
0 & \mathrm{i} \cos (\Omega \mathrm{t})+\sin (\Omega \mathrm{t}) \\
-\mathrm{i} \cos (\Omega \mathrm{t})+\sin (\Omega \mathrm{t}) & 0
\end{array}\right] \\
\sigma(\mathrm{t})=\frac{1}{2}\left[\begin{array}{cc}
0 & \sin (\Omega \mathrm{t}) \\
\sin (\Omega \mathrm{t}) & 0
\end{array}\right]+\frac{\mathrm{i}}{2}\left[\begin{array}{cc}
0 & \cos (\Omega \mathrm{t}) \\
-\cos (\Omega \mathrm{t}) & 0
\end{array}\right] \\
\sigma(\mathrm{t})=\mathrm{I}_{\mathrm{x}} \sin (\Omega \mathrm{t})-\mathrm{I}_{\mathrm{y}} \cos (\Omega \mathrm{t})
\end{gathered}
$$

Magnetization with a positive resonance off precesses in the sense x --> y --> -x --> -y.

