The Rotating Frame Approximation

It we work in the rotating frame we can remove the
complexity of time-dependence from the problem. The
operator that removes the time dependence is:

U= exp{ia),,flzt}

Applying this operator we find
H
= —Wo [ Z

I, cos(a),,ft + d))

+ a)lexp{ia),,flzt} exp{—icurflzt}

+exp{ia),,flzt}iw,,flzexp{—ico,,flzt}



Rotation matrices in NMR

There is a convention regarding directions of rotation that
Is specific to the experimental geometry that is used in
NMR spectrometers. We can write the general rotation
operator as:

To yield the following rotation table:
.y [z

I, I, cos(6) I, cos(6)
— 1, sin(0) + 1, sin(6)
Y I, cos(8) i, I, cos(6)
+ 1, sin(0) — 1, sin(6)
I, cos(0) I, cos(0) I,
—1,,sin(6) +1,,sin(6)



Properties of Rotations Operators

A key relation used in many of the operator equations is
Uf(A)U~! = f(UfAU™Y)

f(A) I1s an arbitrary function of operator A. We can expand
f(UAU1) as a Taylor series.

Ry (a0, 8) = R, (PR, (BIR, ()R (B)RZ ()



Properties of Rotations Operators

Ry (,0) = Ry ($IR, (B)R,()RFL(O)R ()
= R, (d)exp[—iaR, (0)I,R;1(8)|R7 ()
= R,($p)exp[—ia(l, cos 6 + I, sin 8) IR * ()
= exp[—iaR,(d) (I, cos 8 + I, sin O)R; 1 (d)]
= exp|—ia(l, cos 8 + Iycos¢ sin 0 + Iysing sin )]

= exp|—ion - I



Rotation Operators in Matrix Form

The operator for a rotation about an arbitrary angle, o, can
be represented as a series of rotations about the y and z
axes. The five rotations used in this derivation are not
independent of one another. The rotation R (a,0) can be
reduced to three independent rotations using the Euler
method for three dimensional rotation.

COS (g) —isin (g) e‘i‘b-

h = _—isin (g) el® Cos (g)




Rotation Operators in Matrix Form

The angle ¢ determines the axis for rotation perpendicular
to the z-axis. ¢ = 0° signifies a rotation about the x axis.
The inverse Is:

(Ro(@) " =




Application to pulsed NMR

The simplest NMR experiment consists of a single pulse
followed by aquisition of the FID.
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Example of the 180° and 90° Pulse

The Pauli matrices are used here. For example for a 180°
pulse we have

Ry (M)I,RZ* (1) = %[_01 (1)] = _%[(1) _01] = -1

For a 90° pulse we have

Ry (1t/2)I,R5* (1t/2) —1[ ] = __[0 _i]

Thus, after a 90° pulse the magnetization will be along -I,.
The spins will evolve under the Zeeman Hamiltonian as
H, = (wo — wep)l; = QI



Evolution following the 90° Pulse

We can mtroduce time-dependence using
o(t) = exp(—iH,t)o(0)exp(iH,t)
o(t) = exp(—iQl,t)o(0)exp(iQl,t)

o(t) = Us(0)U 1

exp(—iQt/2) 0
0 exp (i.Qt/Z)]

[f we perform the matrix manipulations for o(0) = -1, we find

U = exp(—iQlt) = [

o(t)
_ lrexp(—iQt/2) 0 0 —i1[exp(iQQt/2) 0
-2 0 exp(iQt/Z)] [i 0 ] [ 0 exp(—iQt/Z)]



Evolution following the 90° Pulse

(t)
ci 1 0 —iexp(—iQt/2)] [exp(iQ2t/2) 0
-2 [iexp(iﬂt/Z) 0 [ 0 exp(—iQt/
1 0 iexp(—ilt)
o(t) = 2 [—iexp(i.().t) 0 ]
B 1 0 i[cos(Qt) — isin(Qt)]
o(t) = 2 [—i[cos(Qt) + isin(Qt)] 0



Evolution following the 90° Pulse

1 0 icos(Qt) + sin(Qt)
o(t) = 2 [—icos(Qt) + sin(Qt) 0
B sin(Qt)] 1 0 cos(Qt)
o(t) = 2 [sm(ﬂt) ] T3 [—COS(Q’E) ]

o(t) = Ixsin(Qt) — I;cos(Qt)

Magnetization with a positive resonance off precesses
In the sense x -->y --> -x --> -y,
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