The Rotating Frame Approximation

It we work in the rotating frame we can remove the complexity of time-dependence from the problem. The operator that removes the time dependence is:

$$U = exp\{i\omega_{rf}I_zt\}$$

Applying this operator we find \mathcal{H}

$$= -\omega_0 I_z$$

+ $\omega_1 exp\{i\omega_{rf}I_z t\} \begin{bmatrix} I_x \cos(\omega_{rf}t + \phi) \\ +I_y \sin[i\phi](\omega_{rf}t + \phi) \end{bmatrix} exp\{-i\omega_{rf}I_z t\}$
+ $exp\{i\omega_{rf}I_z t\}i\omega_{rf}I_z exp\{-i\omega_{rf}I_z t\}$

Rotation matrices in NMR

There is a convention regarding directions of rotation that is specific to the experimental geometry that is used in NMR spectrometers. We can write the general rotation operator as:

 $\exp^{i\theta}(i\theta I_{v})I_{u}\exp^{i\theta}(-i\theta I_{v})$

To yield the following rotation table:

	X	у	Z
X	I_x	$I_y \cos(\theta)$	$I_x \cos(\theta)$
		$-I_z\sin(\theta)$	$+I_y\sin(\theta)$
У	$I_y \cos(\theta)$	I_y	$I_y \cos(\theta)$
	$+ I_z \sin(\theta)$		$-I_x\sin(\theta)$
Z	$I_z \cos(\theta)$	$I_z \cos(\theta)$	I_z
	$-I_y \sin(\theta)$	$+I_y\sin(\theta)$	

Properties of Rotations Operators

A key relation used in many of the operator equations is $Uf(A)U^{-1} = f(UfAU^{-1})$

f(A) is an arbitrary function of operator A. We can expand $f(UAU^{-1})$ as a Taylor series.

 $R_{\phi}(\alpha, \theta) = R_{z}(\phi)R_{y}(\theta)R_{z}(\alpha)R_{y}^{-1}(\theta)R_{z}^{-1}(\phi)$

Properties of Rotations Operators

 $R_{\phi}(\alpha, \theta) = R_{z}(\phi)R_{v}(\theta)R_{z}(\alpha)R_{v}^{-1}(\theta)R_{z}^{-1}(\phi)$ $= R_{z}(\phi) \exp\left[-i\alpha R_{v}(\theta) I_{z} R_{v}^{-1}(\theta)\right] R_{z}^{-1}(\phi)$ $= R_z(\phi) \exp[-i\alpha(I_z\cos\theta + I_x\sin\theta)]R_z^{-1}(\phi)$ $= \exp[-i\alpha R_z(\phi)(I_z\cos\theta + I_x\sin\theta)R_z^{-1}(\phi)]$ $= \exp\left[-i\alpha(I_z\cos\theta + I_x\cos\phi\sin\theta + I_v\sin\phi\sin\theta)\right]$ $= \exp[-i\alpha \mathbf{n} \cdot \mathbf{I}]$

Rotation Operators in Matrix Form

The operator for a rotation about an arbitrary angle, α , can be represented as a series of rotations about the y and z axes. The five rotations used in this derivation are not independent of one another. The rotation $R_{\phi}(\alpha,\theta)$ can be reduced to three independent rotations using the Euler method for three dimensional rotation.

$$R_{\phi}(\alpha) = \begin{bmatrix} \cos\left(\frac{\alpha}{2}\right) & -i\sin\left(\frac{\alpha}{2}\right)e^{-i\phi} \\ -i\sin\left(\frac{\alpha}{2}\right)e^{i\phi} & \cos\left(\frac{\alpha}{2}\right) \end{bmatrix}$$

Rotation Operators in Matrix Form

The angle ϕ determines the axis for rotation perpendicular to the z-axis. $\phi = 0^{\circ}$ signifies a rotation about the x axis. The inverse is:

$$\left(R_{\phi}(\alpha)\right)^{-1} = \begin{bmatrix} \cos\left(\frac{\alpha}{2}\right) & i\sin\left(\frac{\alpha}{2}\right) \\ i\sin\left(\frac{\alpha}{2}\right) & \cos\left(\frac{\alpha}{2}\right) \end{bmatrix}$$

Application to pulsed NMR

The simplest NMR experiment consists of a single pulse followed by aquisition of the FID.

$$R_{x}(\alpha)I_{z}R_{x}^{-1}(\alpha) = \frac{1}{2} \begin{bmatrix} c & -is \\ -is & c \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} c & is \\ is & c \end{bmatrix}$$
$$= \frac{1}{2} \begin{bmatrix} c & is \\ -is & -c \end{bmatrix} \begin{bmatrix} c & is \\ is & c \end{bmatrix}$$
$$= \frac{1}{2} \begin{bmatrix} c^{2} - s^{2} & 2ics \\ -2ics & s^{2} - c^{2} \end{bmatrix}$$
$$= \frac{1}{2} \begin{bmatrix} \cos \alpha & i \sin \alpha \\ -i \sin \alpha & -\cos \alpha \end{bmatrix}$$
$$= I_{z} \cos \alpha - I_{y} \sin \alpha$$

Example of the 180° and 90° Pulse

The Pauli matrices are used here. For example for a 180° pulse we have

$$R_{x}(\pi)I_{z}R_{x}^{-1}(\pi) = \frac{1}{2}\begin{bmatrix}-1 & 0\\0 & 1\end{bmatrix} = -\frac{1}{2}\begin{bmatrix}1 & 0\\0 & -1\end{bmatrix} = -I_{z}$$

For a 90° pulse we have $R_x(\pi/2)I_zR_x^{-1}(\pi/2) = \frac{1}{2} \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix} = -\frac{1}{2} \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} = -I_y$

Thus, after a 90° pulse the magnetization will be along $-I_y$. The spins will evolve under the Zeeman Hamiltonian as $H_z = (\omega_0 - \omega_{rf})I_z = \Omega I_z$

Evolution following the 90° Pulse

We can introduce time-dependence using $\sigma(t) = \exp(-iH_z t)\sigma(0)\exp(iH_z t)$ $\sigma(t) = \exp(-i\Omega I_z t)\sigma(0)\exp(i\Omega I_z t)$

 $\sigma(t) = \mathbf{U}\sigma(0)\mathbf{U}^{-1}$

$$\mathbf{U} = \exp(-\mathrm{i}\Omega I_{z}t) = \begin{bmatrix} \exp(-\mathrm{i}\Omega t/2) & 0\\ 0 & \exp(\mathrm{i}\Omega t/2) \end{bmatrix}$$

If we perform the matrix manipulations for $\sigma(0) = -I_y$, we find

$$\sigma(t) = -\frac{1}{2} \begin{bmatrix} \exp(-i\Omega t/2) & 0 \\ 0 & \exp(i\Omega t/2) \end{bmatrix} \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \begin{bmatrix} \exp(i\Omega t/2) & 0 \\ 0 & \exp(-i\Omega t/2) \end{bmatrix}$$

Evolution following the 90° Pulse

$$\sigma(t) = -\frac{1}{2} \begin{bmatrix} 0 & -i\exp(-i\Omega t/2) \\ i\exp(i\Omega t/2) & 0 \end{bmatrix} \begin{bmatrix} \exp(i\Omega t/2) & 0 \\ 0 & \exp(-i\Omega t/2) \end{bmatrix}$$
$$\sigma(t) = \frac{1}{2} \begin{bmatrix} 0 & i\exp(-i\Omega t) \\ -i\exp(i\Omega t) & 0 \end{bmatrix}$$
$$\sigma(t) = \frac{1}{2} \begin{bmatrix} 0 & i[\cos(\Omega t) - i\sin(\Omega t)] \\ -i[\cos(\Omega t) + i\sin(\Omega t)] & 0 \end{bmatrix}$$

Evolution following the 90° Pulse

$$\sigma(t) = \frac{1}{2} \begin{bmatrix} 0 & i\cos(\Omega t) + \sin(\Omega t) \\ -i\cos(\Omega t) + \sin(\Omega t) & 0 \end{bmatrix}$$

$$\sigma(t) = \frac{1}{2} \begin{bmatrix} 0 & \sin(\Omega t) \\ \sin(\Omega t) & 0 \end{bmatrix} + \frac{i}{2} \begin{bmatrix} 0 & \cos(\Omega t) \\ -\cos(\Omega t) & 0 \end{bmatrix}$$

$$\sigma(t) = I_x \sin(\Omega t) - I_y \cos(\Omega t)$$

Magnetization with a positive resonance off precesses in the sense $x \rightarrow y \rightarrow -x \rightarrow -y$.