
Product operators

Product operators provide us with a way to describe the 
behavior of complicated NMR experiments.  The vector 
model, while informative, does not provide a means for 
predicting the outcomes of multi-pulsed coupled spin 
systems.

The product operator formalism gives a quantum 
mechanical description of spin systems in the form of the 
density matrix theory. 

In this approach we use spin operators to describe spin 
magnetization along different axis and observe the effect 
pulses and delays have on the spin system.     



Why involve ourselves with complex product operators when 
we can use the vector model?

The vector model, while useful for basic NMR experiments, 
fails when applied toward coupled spin systems (ie. COSY)

What makes the product operators so appealing is that it 
utilizes simple math to describe the complex quantum 
mechanics of multi-pulse NMR.

Product operators vs. vector 



A mass in a circular orbit possesses angular momentum.

The x, y, and z components of the magnetization are 
represented by spin angular momentum operators:

Ix, Iy, and Iz

At equilibrium (only z-magnetization is present) the 
density operator σ, which represents the state of the spin 
system, can be described:

Spin operators

σeq = Iz



In NMR the Hamiltonian is represented differently in 
different environments.  There is one Hamiltonian for 
the spins in a static magnetic field, and another for a 
radio frequency pulse resulting in rotations about x 
and y-axes:

Hamiltonians

Free precession: Pulse about x-axis: Pulse about y-axis:

H free = Ω Iz H pulse,y = ω1I yH pulse,x = ω1Ix

Ω represents the frequency of rotation about the z-
axis, and ω represents the frequency of the Larmor
precession (rad s-1)



The density operator at a time t, σ(t), can be solved from 
time 0, σ(0), by the following:σ t =

σ t = exp(−iℋt)σ 0 exp(iℋt)

Equation of motion

With some simple rules this equation is easily solved.  
For example consider a 90° x-pulse for duration τp is 
applied to equilibrium magnetization:

σ 0 = 𝐼𝐼𝑧𝑧

ℋ = 𝜔𝜔1𝐼𝐼𝑥𝑥

σ 𝜏𝜏𝑝𝑝 = exp(−i𝜔𝜔1𝐼𝐼𝑥𝑥𝜏𝜏𝑝𝑝)σ 0 exp(i𝜔𝜔1𝐼𝐼𝑥𝑥𝜏𝜏𝑝𝑝)



We now need an identity to solve the equation.  For a 
single spin system all identities have the same form:

exp −i𝜃𝜃𝐼𝐼𝑎𝑎 old exp i𝜃𝜃𝐼𝐼𝑎𝑎 = cos 𝜃𝜃 𝑜𝑜𝑜𝑜𝑜𝑜 + sin 𝜃𝜃 𝑛𝑛𝑛𝑛𝑛𝑛

Rotation of operators

By rewriting ω1τp as an angle β, the equation becomes:

σ 𝜏𝜏𝑝𝑝 = exp(−i𝛽𝛽𝐼𝐼𝑥𝑥)σ 0 exp(i𝛽𝛽𝐼𝐼𝑥𝑥)

where a = x, y or z. So how do we know what the new 
operator (magnetization vector) is?  It is determined from 
the following rotation diagram, which is based on the 
information that we have already seen regarding how the 
various pulse operators will affect the spins.

σ 𝜏𝜏𝑝𝑝 = exp(−i𝜔𝜔1𝐼𝐼𝑥𝑥𝜏𝜏𝑝𝑝)σ 0 exp(i𝜔𝜔1𝐼𝐼𝑥𝑥𝜏𝜏𝑝𝑝)



Standard rotations

In our case the pulse is the about the x-axis.  So the 
diagram shows that Iz (old operator) is rotated to I-y
(new operator).   



Example: the π/2 pulse
Iz (old operator) and -Iy (new operator)   

We can construct a shorthand notation for this type of 
rotation:

We now need an identity to solve the equation.  For a 
single spin system all identities have the same form:

exp −i𝜋𝜋𝐼𝐼𝑥𝑥/2 old exp i𝜋𝜋𝐼𝐼𝑥𝑥/2 = 𝑛𝑛𝑛𝑛𝑛𝑛

exp −i𝜋𝜋𝐼𝐼𝑥𝑥/2 𝐼𝐼𝑧𝑧exp i𝜋𝜋𝐼𝐼𝑥𝑥/2 = −𝐼𝐼𝑦𝑦

Iz –I y

ω1t pIx
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