The classical vs. quantum view

- According to a classical picture the nuclei precess around the axis of the applied magnetic field B_z or B_0 .
- In the quantum view a sample is composed of many nuclei of spin I = 1/2. The angular momentum is a vector of length {I(I +1)}^{1/2} and a component of length m_I along the z-axis.
- The uncertainty principle does not allow us to specify the x- and y- components
- In either case the energy difference between the two states is very small and therefore the population difference is also small.

The population difference and sensitivity of the NMR experiment

Given the fact that v_L is in the radiofrequency range h $v_L \ll k_B T$. This small population difference gives rise to the measured magnetization in a NMR experiment.

The bulk magnetization vector

Precessing nuclear spins The bulk magnetization

 M_0

The applied magnetic field B causes spins to precess at the Larmor frequency resulting in a bulk magnetization M_0 .

The Bloch Equations

The magnetization vector M obeys a classical torque equation:

$$\frac{dM}{dt} = M \times B$$

where B is the magnetic field vector. M precesses about the direction of an applied field B with an angular frequency γ B radians/second.

The Vector Components of the Bloch Equations

$$\frac{dM_x}{dt} = \gamma \left(M_y B_z - M_z B_y \right)$$
$$\frac{dM_y}{dt} = \gamma \left(M_z B_x - M_x B_z \right)$$
$$\frac{dM_z}{dt} = \gamma \left(M_x B_y - M_y B_x \right)$$

If no radiofrequency fields are present then $dM_x/dt = 0$ and $dM_y/dt = 0$ and we simplyhave rotation about the static field B_z . We will also call this B_0 .

The static field causes precession of nuclear spins

The static fieldThe bulkmagnetization

The magnetic field vector M precesses about B_0 . The spins precess at the Larmor frequency $\omega = -\gamma B_0$.