The derivative of $\sin (x)$

$$
\frac{d}{d x} \sin (x)=\cos (x)
$$

The derivative of $\cos (x)$

$$
\frac{d}{d x} \cos (x)=-\sin (x)
$$

The second derivative of $\sin (x)$

$$
\frac{d}{d x}\left(\frac{d}{d x} \sin (x)\right)=-\sin (x)
$$

The second derivative of $\sin (x)$

$$
\frac{d^{2}}{d x^{2}} \sin (x)=-\sin (x)
$$

$\operatorname{Sin}(x)$ is an eigenfunction

If we define $-\frac{d^{2}}{d x^{2}}$ as an operator G then we have:

$$
-\frac{d^{2}}{d x^{2}} \sin (x)=\sin (x)
$$

which can be written as:

$$
G \sin (x)=\sin (x)
$$

This is a simple example of an operator equation that is closely related to the Schrödinger equation.

$\operatorname{Sin}(k x)$ is also an eigenfunction

We can make the problem more general by including a constant k . This constant is called a wavevector. It determines the period of the sin function. Now we must take the derivative of the sin function and also the function $k x$ inside the parentheses (chain rule).

$$
\begin{aligned}
-\frac{d}{d x} \sin (k x) & =-k \cos (k x) \\
-\frac{d^{2}}{d x^{2}} \sin (k x) & =k^{2} \sin (k x)
\end{aligned}
$$

Here we call the value k^{2} the eigenvalue.

$\operatorname{Sin}(k x)$ is an eigenfunction of the Schrödinger equation

The example we are using here can easily be expressed as the Schrodinger equation for wave in space. We only have to add a constant.

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \sin (k x)=\frac{\hbar^{2} k^{2}}{2 m} \sin (k x)
$$

In this equation \hbar is Planck's constant divided by 2π and m is the mass of the particle that is traveling through space. The eigenfunction is still $\sin (\mathrm{kx})$, but the eigenvalue in this equation is actually the energy.

The Schrödinger equation

Based on these considerations we can write a compact form for the Schrödinger equation.

$$
\begin{array}{cl}
H \Psi=E \Psi \\
H=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} & \text { Energy operator, Hamiltonian } \\
E=\frac{\hbar^{2} k^{2}}{2 m} & \text { Energy eigenvalue, Energy } \\
\Psi=\sin (k x) & \text { Wavefunsction }
\end{array}
$$

The definition of momentum

The momentum is related to the kinetic energy. Classically The kinetic energy is:

$$
E=\frac{1}{2} m v^{2}
$$

The momentum is:

$$
\mathrm{p}=\mathrm{mv}
$$

So the classical relationship is:

$$
E=\frac{p^{2}}{2 m}
$$

If we compare this to the quantum mechanical energy:

$$
E=\frac{\hbar^{2} k^{2}}{2 m} \quad \text { we see that: } p=\hbar k
$$

