Types of Lasers

- Ar and Kr ion lasers
- Nd:YAG and Nd:YLF lasers
- CO₂ lasers
- Excimer lasers
- Dye lasers
- Transition metal lasers
- Optical parametric amplification

Ar and Kr ion lasers

- Noble gas ions are created in an electric discharge. The ions have specific electronic transitions.
- Ar⁺ lines: 514, 501, 488, 476 and 457 nm.
- Kr + lines: 406, 413 and 752 nm.
- Continuous wave (cw), non-tunable, useful narrow bandwidth source for pumping cw dye lasers.

Ar and Kr ion laser lines

Argon ion laser

- A high discharge current is used to form ions.
- Powerful continuous wave operation can be achieved by discharge (15-50 Amps!) to maximize the pumping power.
- Up to 25 watts of CW output
- Pump to 4P states, 35eV above ground state.
- Transitions correspond to 4P-4S, 514.5nm and 488nm.
- Use Brewster windows at ends of gas tube to isolate a single polarization with minimum reflection losses.

Nd:YAG and Nd:YLF lasers

- Flash lamp pumped transitions with strong lasing at 1.064 μm. There are narrow transitions due to the fact that f-orbital transitions are buried below 5s and 5p.
- Cavity is Q-switched for 10 ns every 0.1 seconds. Q-switching is an electronic method to create a short pulse (or burst) of laser light.
- Frequency doubling using KDP to achieve 532 nm, the most frequently used wavelength in biophysical studies of biological molecules.

Frequency doubled Nd:YAG

Nd:YAG

- Nd:YAG is the commonly used laser material today.
- Neodymium-doped yttrium aluminium garnet; Nd:Y₃Al₅O₁₂) is a crystal that is used as a lasing medium for solid-state lasers.
- It is particularly useful in nanosecond pulsed lasers.
- The Nd:YAG fundamental occurs at 1064 nm.

Nd:YLF

- Nd:YLF is used in a diode pumped configuration.
- Neodymium yttrium lithium fluoride; $LiY_{1-x}Nd_xF_4$).
- It is particularly useful in as a reliable pump source for Ti:sapphire.
- The Nd:YAG fundamental occurs at 1047 nm.

CO₂ lasers

- There are four vibrational modes of CO₂.
- The point group is D_{infinity_h}.
- The vibrations are: totally symmetric stretch bend (two dimensions) antisymmetric stretch
- The bend and anti-symmetric stretch form a Fermi resonance.

CO₂ lasers are infrared lasers

- N₂ can be pumped in an electric discharge into the first excited vibrational state.
- Efficient energy transfer results in excitation of the CO₂ symmetric stretch.
- The lasing transition occurs between different rotational states of the anti-symmetric stretch at 2400 cm⁻¹ and the other vibrational modes symmetric stretch at 1400 cm⁻¹ and bend at 1300 cm⁻¹.

Energy level scheme for CO₂ lasers

The gain curve of CO₂ spans the rotational states energies of the molecule

- It is logical that the tunability of a "vibrational laser" arises from the rovibrational fine structure.
- The population of an independent vibrational level J is $p_J = (2J+1)^* e^{-hcB/kT[J(J+1))}/q$ where q=kT/hcB in the high temperature approximation.
- During lasing if a particular level is depleted, there is population flow into that level to maintain a Boltzmann distribution. This implies a build up into a mode where all lasing occurs from a single level.

Excimer lasers

- An excimer is an excited state charge transfer complex that is dissociative in the ground state.
- The unstable ground state serves to create a four level system.
- Typical UV lasers XeCI 308 nm ArF 247 nm

Dye lasers

- Tunable lasers pumped both cw by Ar and Kr ion and in pulsed laser applications by Nd:YAG.
- Common dyes Rhodamine λ_{max} =590 nm Stilbene-1 λ_{max} =430 nm Coumarin λ_{max} =430 nm

Dye lasers are messy

Pumped liquid contains dye. Dye degrades over time. Result is a frequent exchange of laser dyes.

Solid state alternative: Ar ion laser exciting a Ti:sapphire rod

d-d transitions can give a useful four level system for tunable lasers

- A titanium sapphire laser Ti:Al₂O₃ is a four level system.
- This is part of a vibronic mechanism which results in a Jahn-Teller distortion of the complex. In this distorted complex e_u is the fourth state.

Ti is d¹ leading to population of a single low energy state in the d-orbitals

Comparison of three and four state systems

- Cr is d³ and this results in a different behavior than for Ti.
- Because each of the t_{2g} levels is occupied by a single electron there is no Jahn-Teller distortion.
- Ruby has the disadvantage as well that other t_{2g} -> e_g transitions can occur absorbing the light.

Cr(III) ligand field is nearly O_h so help is required from other metals

- Note that the rate equations for triply degenerate t_{2g} ground state of Cr(III) imply that the rate of absorptive transitions is 2 times higher than for the stimulated emission.
- From this view point we see that ruby is definitely not the ideal material. Alexandrite (CrBe:Al₂O₄) is a four level system and that overcomes these problems.
- Ruby and Alexandrite are transition metal lasers.

Z-shaped laser cavity standard in Ti:sapphire design

A Ti:sapphire tuning curve

