#### Lasers in Chemistry

<u>Light Amplification by Stimulated Emission of Radiation</u>

I. Requirements for a laser II. Two state, three state, and four state systems. III. Survey of tunable lasers. IV. Applications

### Requirements for a laser

- Gain (population inversion)
- Laser cavity (reflecting mirrors)
- Output coupler (semi-reflective mirror)
- Standing waves can be obtained for  $n\lambda=2L$
- The bandwidth in the laser cavity can be modulated using birefringent filters, etalons, or grating/prism combinations.

# Gain can only be achieved with a population inversion

- Gain represents the increase in photons emitted from the sample compared to a Boltzmann distribution.
- The Boltzmann distribution will never allow for more population in an excited state than in the ground state.
- Gain represents a non-Boltzmann distribution induced by optical or electrical pumping.

#### Two Level System in Spectroscopy

W<sub>emission</sub>=n<sub>1</sub>Bp

- For states 0 and 1 the Einstein B coefficients are equal
- High fluence limit results in a ratio of populations determined by microscopic reversibility
  Wabsorption=n0Bp
- At equilibrium W<sub>absorption</sub> = W<sub>emission</sub>
- Since Br is the same, in the limit of large r we have that  $n_1 = n_0$ , and there is no population inversion (i.e.  $n_1 < n_0$ ).

### A Three Level System: Laser

- Optical or electrical pumping is used.
- Pump to intermediate state that decays into longlived emissive state.
- Ground state population must be overcome to make a population inversion in the emissive state.
- Example: the ruby laser, Cr:Al<sub>2</sub>0<sub>3</sub> in which Cr d-d transitions give a population inversion in a state that emits at 594 nm.

A three-level system provides a route to a population inversion

- We can simplify the rate equations by assuming that
- If  $k_{21}n_2 >> n_1B\rho$  then a population build-up in  $n_1$ can lead to an population inversion  $n_1 >> n_0$ .
- Still has disadvantage that population in n<sub>0</sub> is dominating at equilibrium.



#### **Basic physical justification**

The figure shows why a population inversion is needed. It you want to get more photons out than you put in you need many molecules in the excited state to start a cascade of output photons.



# A four-level system produces superior results for laser design

 A four level system provides ease of creation of an inversion since state 3 is essentially unpopulated at equilibrium.



# A four-level system produces superior results for laser design

- A four level system provides ease of creation of an inversion since state 3 is essentially unpopulated at equilibrium.
- In order for this scheme to work the rate
- Rate from 1 to 2 is rapid
- Rate from 3 to 0 is rapid.



# A four-level system produces superior results for laser design

- A four level system provides ease of creation of an inversion since state 3 is essentially unpopulated at equilibrium.
- In order for this scheme to work the rate
- Rate from 1 to 2 is rapid
- Rate from 3 to 0 is rapid.
- The population inversion is set up between 2 and 3.



## Comparison of thermal and pumped population



#### The laser cavity



The partial reflector is usually called the output coupler.

### The gain bandwidth

Although laser light is perhaps the purest form of light, it is not of a single, pure frequency. All lasers produce light over some natural bandwidth or range of frequencies. A laser's bandwidth of operation is determined primarily by the gain medium that the laser is constructed from, and the range of frequencies that a laser may operate over is known as the gain bandwidth. For example, a HeNe gas laser has a gain bandwidth of 1.5 GHz Ti:sapphire has a bandwidth of about 128 THz Exercise: convert these to wavenumbers!

### Longitudinal modes

These standing waves form a discrete set of frequencies, known as the longitudinal modes of the cavity. These modes are the only frequencies of light which are self-regenerating and allowed to oscillate by the resonant cavity; all other frequencies of light are suppressed by destructive interference. For a simple plane-mirror cavity, the allowed modes are those for which the separation distance of the mirrors L is an exact multiple of half the wavelength of the light  $\lambda$ , such that  $L = N\lambda/2$ , when N is an integer known as the mode order.

### Longitudinal modes

In practice, the separation distance of the mirrors L is usually much greater than the wavelength of light  $\lambda$ , so the relevant values of N are large (around  $10^5$  to  $10^6$ ). Of more interest is the frequency separation between any two adjacent modes N and N+1; this is given (for an empty linear resonator of length L) by Δv:  $\Delta v = \frac{C}{2I}$ 

where c is the speed of light (
$$\approx 3 \times 10^8$$
 m·s<sup>-1</sup>)

### Output modes

The figure on the right shows the combination of the gain bandwidth and longitudinal modes. This leads to a discrete set of wavelengths that are output from the laser within the bandwidth.



#### Gaussian beam optics

#### **Transverse resonator modes**



#### Introduction to the Gaussian beam

A Gaussian beam has a transverse electric field and intensity distribution that are well represented by a Gaussian function. This is observed when the laser operates using the fundamental transverse mode (TEM<sub>00</sub> mode) of the optical resonator.

When refracted by a diffraction-limited lens, a Gaussian beam is transformed into another Gaussian beam (characterized by a different set of parameters). This optical model is a convenient model used in laser optics.

#### Intensity profile of TEM<sub>00</sub>



#### The concept of a beam waist

