Vibronic coupling

The most fundamental level of approximation is known as the crude adiabatic (CA) approximation. In this approximation the nuclear of the electronic wave function are fixed at a value Q_{0}.

$$
\psi_{n v}^{C A}(r, Q)=\psi_{n}^{0}\left(r, Q_{0}\right) \chi_{n v}^{C A}(Q)
$$

Q_{0} is a reference geometry, which may be the equilibrium position or a transition state in some cases.

The crude adiabatic approximation

The most fundamental level of approximation is known as the crude adiabatic (CA) approximation. In this approximation the nuclear of the electronic wave function are fixed at a value Q_{0}.

$$
\psi_{n v}^{C A}(r, Q)=\psi_{n}^{0}\left(r, Q_{0}\right) \chi_{n v}^{C A}(Q)
$$

Q_{0} is a reference geometry, which may be the equilibrium position or a transition state in some cases.
$\chi_{n v}^{C A}(Q)$ is the vibration-rotation wave function calculated from an approximate Schrodinger equation:

$$
[T(Q)+\underbrace{\left.V(Q)+\varepsilon_{n}^{0}\left(Q_{0}\right)+\left\langle\psi_{n}^{0}\left(r, Q_{0}\right)\right| \Delta U(r, Q)\left|\psi_{n}^{0}\left(r, Q_{0}\right)\right\rangle\right]} \chi_{n v}^{C A}(Q)=E_{n v}^{C A} \chi_{n v}^{C A}(Q)
$$

Effective potential

Distortion along non-totally symmetric modes

The effective potential contains the term $\Delta \mathrm{U}$ that represents the energy change upon distortional along a non-totally symmetric vibrational mode.

$$
\left[T(Q)+V(Q)+\varepsilon_{n}^{0}\left(Q_{0}\right)+\left\langle\psi_{n}^{0}\left(r, Q_{0}\right)\right| \Delta U(r, Q)\left|\psi_{n}^{0}\left(r, Q_{0}\right)\right\rangle\right] \chi_{n v}^{C A}(Q)=E_{n v}^{C A} \chi_{n v}^{C A}(Q)
$$

The term $\Delta \mathrm{U}$ is defined as

$$
\Delta U(r, Q)=U(r, Q)-U\left(r, Q_{0}\right)
$$

We can expand ΔU in powers of the non-totally symmetric mode coordinate, i:

$$
\Delta U=\Delta U\left(r, Q_{0}\right)+\sum_{i} \frac{\partial \Delta U(r, Q)}{\partial Q_{i}} Q_{i}+\cdots \text { higher order }
$$

Distortion along non-totally symmetric modes

Note that $\Delta U\left(r, Q_{0}\right)=0$ since

$$
\Delta U(r, Q)=U(r, Q)-U\left(r, Q_{0}\right)
$$

And therefore

$$
\Delta U\left(r, Q_{0}\right)=U\left(r, Q_{0}\right)-U\left(r, Q_{0}\right)=0
$$

We can also ignore the higher order terms. The expansion of $\Delta \mathrm{U}$ in powers of the non-totally symmetric mode coordinates becomes

$$
\Delta U \approx \sum_{i} \frac{\partial \Delta U(r, Q)}{\partial Q_{i}} Q_{i}
$$

The $\Delta \mathrm{U}$ integral is evaluated using $\psi_{n}^{0}\left(r, Q_{0}\right)$, which has a fixed nuclear coordinate and thus cannot contain the effect of distortion of the molecule. We can use perturbation theory present that effect:

$$
\begin{gathered}
\psi_{n v}(r, Q)=\psi_{n v}^{C A}(r, Q)+\sum_{m u \neq n v} \frac{\left\{\psi_{n v}^{C A}|\Delta U| \psi_{m u}^{C A}\right\}}{E_{n v}^{C A}-E_{m u}^{C A}} \psi_{m u}^{C A}(r, Q) \\
=\psi_{n v}^{0}\left(r, Q_{0}\right) \chi_{n v}^{C A}(Q)+\sum_{u} \sum_{m u \neq n v} \frac{\left(\chi_{n v}^{C A}\left\langle\psi_{n}^{0}\right| \Delta U\left|\psi_{m}^{0}\right\rangle \chi_{m u}^{C A}\right)}{E_{n v}^{C A}-E_{m u}^{C A}} \psi_{m u}^{C A}\left(r, Q_{0}\right) \chi_{m u}^{C A}(Q)
\end{gathered}
$$

\{ \} indicates an integral of r and Q (both electronic and nuclear)
() indicates an integral over Q (nuclear only)
〈 〉 Indicates an integral over r (electronic only)
This is known as the Herzberg-Teller expansion.

We substitute $\Delta \mathrm{U}$ in powers of the nuclear coordinate for the promoting modes, i.

$$
\Delta U \approx \sum_{i} \frac{\partial \Delta U(r, Q)}{\partial Q_{i}} Q_{i}
$$

We use ΔU to define the vibronic mixing coefficient

$$
\gamma_{n v, m u}^{i}=\frac{\left\langle\psi_{n}^{0}\right| \frac{\partial \Delta U}{\partial Q_{i}}\left|\psi_{m}^{0}\right\rangle\left\langle\chi_{n v}^{C A}\right| Q_{i}\left|\chi_{m u}^{C A}\right\rangle}{E_{n v}^{C A}-E_{m u}^{C A}}
$$

We substitute $\Delta \mathrm{U}$ in powers of the nuclear coordinate for the promoting modes, i.

$$
\Delta U \approx \sum_{i} \frac{\partial \Delta U(r, Q)}{\partial Q_{i}} Q_{i}
$$

We use $\Delta \mathrm{U}$ to define the vibronic mixing coefficient

$$
\gamma_{n v, m u}^{i}=\frac{\left\langle\psi_{n}^{0}\right| \frac{\partial \Delta U}{\partial Q_{i}}\left|\psi_{m}^{0}\right\rangle\left\langle\chi_{n}^{C A}\right| Q_{i}\left|\chi_{m u}^{C A}\right\rangle}{E_{n v}^{C A}-E_{m u}^{C A}}
$$

The derivative $\partial / \partial Q$ appears in the cross terms of the complete Hamiltonian that includes both electronic and nuclear motion. We invoke the Born-Oppenheimer approximation to eliminate the cross terms

$$
H_{\text {complete }}=-\frac{\hbar^{2}}{2}\left(\frac{1}{m} \frac{\partial^{2}}{\partial r^{2}}+\frac{1}{\mu} \frac{\partial^{2}}{\partial Q \partial r}+\frac{1}{\mu} \frac{\partial^{2}}{\partial r \partial Q}+\frac{1}{M} \frac{\partial^{2}}{\partial Q^{2}}\right)
$$

We substitute $\Delta \mathrm{U}$ in powers of the nuclear coordinate for the promoting modes, i.

$$
\Delta U \approx \sum_{i} \frac{\partial \Delta U(r, Q)}{\partial Q_{i}} Q_{i}
$$

We use $\Delta \mathrm{U}$ to define the vibronic mixing coefficient

$$
\gamma_{n v, m u}^{i}=\frac{\left\langle\psi_{n}^{0}\right| \frac{\partial \Delta U}{\partial Q_{i}}\left|\psi_{m}^{0}\right\rangle\left\langle\chi_{n}^{C A}\right| Q_{i}\left|\chi_{m u}^{C A}\right\rangle}{E_{n v}^{C A}-E_{m u}^{C A}}
$$

The derivative $\partial / \partial Q$ appears in the cross terms of the complete Hamiltonian that includes both electronic and nuclear motion. We invoke the Born-Oppenheimer approximation to eliminate the cross terms

$$
H_{\text {Born-oppenheimer }} \approx-\frac{\hbar^{2}}{2}\left(\frac{1}{m} \frac{\partial^{2}}{\partial r^{2}}+\frac{1}{M} \frac{\partial^{2}}{\partial Q^{2}}\right)
$$

We substitute $\Delta \mathrm{U}$ in powers of the nuclear coordinate for the promoting modes, i.

$$
\Delta U \approx \sum_{i} \frac{\partial \Delta U(r, Q)}{\partial Q_{i}} Q_{i}
$$

We use $\Delta \mathrm{U}$ to define the vibronic mixing coefficient

$$
\gamma_{n v, m u}^{i}=\frac{\left\langle\psi_{n}^{0}\right| \frac{\partial \Delta U}{\partial Q_{i}}\left|\psi_{m}^{0}\right\rangle\left\langle\chi_{n v}^{C A}\right| Q_{i}\left|\chi_{m u}^{C A}\right\rangle}{E_{n v}^{C A}-E_{m u}^{C A}}
$$

When the two separate equations have been solved term that contain the derivative $\partial / \partial Q$ can be perturbations that couple states that are normally orthogonal.

$$
H_{\text {electronic }}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial r^{2}} \quad H_{\text {nuclear }}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial Q^{2}}
$$

We substitute $\Delta \mathrm{U}$ in powers of the nuclear coordinate for the promoting modes, i.

$$
\Delta U \approx \sum_{i} \frac{\partial \Delta U(r, Q)}{\partial Q_{i}} Q_{i}
$$

We use ΔU to define the vibronic mixing coefficient

$$
\gamma_{n v, m u}^{i}=\frac{\left\langle\psi_{n}^{0}\right| \frac{\partial \Delta U}{\partial Q_{i}}\left|\psi_{m}^{0}\right\rangle\left\langle\chi_{n v}^{C A}\right| Q_{i}\left|\chi_{m u}^{C A}\right\rangle}{E_{n v}^{C A}-E_{m u}^{C A}}
$$

We substitute ΔU in powers of the nuclear coordinate for the promoting modes, i.

$$
\Delta U \approx \sum_{i} \frac{\partial \Delta U(r, Q)}{\partial Q_{i}} Q_{i}
$$

We use $\Delta \mathrm{U}$ to define the vibronic mixing coefficient

$$
\gamma_{n v, m u}^{i}=\frac{\left\langle\psi_{n}^{0}\right| \frac{\partial \Delta U}{\partial Q_{i}}\left|\psi_{n}^{0}\right\rangle\left\langle\chi_{n v}^{C A}\right| Q_{i}\left|\chi_{m u}^{C A}\right\rangle}{E_{n v}^{C A}-E_{m u}^{C A}}
$$

The nuclear coordinate Q can couple two vibrational state wave functions if and only if they differ by one vibrational quantum. For example:

$$
\langle 0| Q|1\rangle=\int_{-\infty}^{\infty} \chi_{0} Q \chi_{1} d Q=\left(\frac{\alpha}{\pi}\right)^{1 / 2} \int_{-\infty}^{\infty} e^{-\alpha Q^{2} / 2} Q \sqrt{2 \alpha} Q e^{-\alpha Q^{2} / 2} d Q
$$

We substitute ΔU in powers of the nuclear coordinate for the promoting modes, i.

$$
\Delta U \approx \sum_{i} \frac{\partial \Delta U(r, Q)}{\partial Q_{i}} Q_{i}
$$

We use $\Delta \mathrm{U}$ to define the vibronic mixing coefficient

$$
\gamma_{n v, m u}^{i}=\frac{\left\langle\psi_{n}^{0}\right| \frac{\partial \Delta U}{\partial Q_{i}}\left|\psi_{m}^{0}\right\rangle\left\langle\chi_{n v}^{C A}\right| Q_{i}\left|\chi_{m u}^{C A}\right\rangle}{E_{n v}^{C A}-E_{m u}^{C A}}
$$

The nuclear coordinate Q can couple two vibrational state wave functions if and only if they differ by one vibrational quantum. For example:

$$
\langle 0| Q|1\rangle=\left(\frac{2}{\pi}\right)^{1 / 2} \alpha \int_{-\infty}^{\infty} e^{-\alpha Q^{2}} Q^{2} d Q=\left(\frac{2}{\pi}\right)^{1 / 2} \alpha\left(\frac{\pi}{4 \alpha^{3}}\right)^{1 / 2}=\frac{1}{\sqrt{2 \alpha}}
$$

We substitute ΔU in powers of the nuclear coordinate for the promoting modes, i.

$$
\Delta U \approx \sum_{i} \frac{\partial \Delta U(r, Q)}{\partial Q_{i}} Q_{i}
$$

We use $\Delta \mathrm{U}$ to define the vibronic mixing coefficient

$$
\gamma_{n v, m u}^{i}=\frac{\left\langle\psi_{n}^{0}\right| \frac{\partial \Delta U}{\partial Q_{i}}\left|\psi_{m}^{0}\right\rangle\left\langle\chi_{n v}^{C A}\right| Q_{i}\left|\chi_{m u}^{C A}\right\rangle}{E_{n v}^{C A}-E_{m u}^{C A}}
$$

The nuclear coordinate Q can couple two vibrational state wave functions if and only if they differ by one vibrational quantum. For example:

$$
\langle 0| Q|1\rangle=\left(\frac{2}{\pi}\right)^{1 / 2} \alpha \int_{-\infty}^{\infty} e^{-\alpha Q^{2}} Q^{2} d Q=\left(\frac{2}{\pi}\right)^{1 / 2} \alpha\left(\frac{\pi}{4 \alpha^{3}}\right)^{1 / 2}=\frac{1}{\sqrt{2 \alpha}}
$$

We substitute ΔU in powers of the nuclear coordinate for the promoting modes, i.

$$
\Delta U \approx \sum_{i} \frac{\partial \Delta U(r, Q)}{\partial Q_{i}} Q_{i}
$$

We use $\Delta \mathrm{U}$ to define the vibronic mixing coefficient

$$
\gamma_{n v, m u}^{i}=\frac{\left\langle\psi_{n}^{0}\right| \frac{\partial \Delta U}{\partial Q_{i}}\left|\psi_{m}^{0}\right\rangle\left\langle\chi_{n v}^{C A}\right| Q_{i}\left|\chi_{m u}^{C A}\right\rangle}{E_{n v}^{C A}-E_{m u}^{C A}}
$$

The nuclear coordinate Q can couple two vibrational state wave functions if and only if they differ by one vibrational quantum. For example:

$$
\langle 0| Q|1\rangle=\frac{1}{\sqrt{2 \alpha}}=\sqrt{\frac{\hbar}{2 \mu \omega}}
$$

We substitute ΔU in powers of the nuclear coordinate for the promoting modes, i.

$$
\Delta U \approx \sum_{i} \frac{\partial \Delta U(r, Q)}{\partial Q_{i}} Q_{i}
$$

We use $\Delta \mathrm{U}$ to define the vibronic mixing coefficient

$$
\gamma_{n v, m u}^{i}=\frac{\left\langle\psi_{n}^{0}\right| \frac{\partial \Delta U}{\partial Q_{i}}\left|\psi_{m}^{0}\right\rangle\left\langle\chi_{n v}^{C A}\right| Q_{i}\left|\chi_{m u}^{C A}\right\rangle}{E_{n v}^{C A}-E_{m u}^{C A}}
$$

Substituting the coefficient into the expression above we can write it in a compact form.

$$
\psi_{n v}(r, Q)=\psi_{n v}^{0}\left(r, Q_{0}\right) \chi_{n v}^{C A}(Q)+\sum_{i} \sum_{u} \sum_{m u \neq n v} \gamma_{n v, m u}^{i} \psi_{m u}^{0}\left(r, Q_{0}\right) \chi_{m u}^{C A}(Q)
$$

The coefficient $\gamma_{n v, m u}^{i}$ will vanish unless

$$
\Gamma_{n v} \otimes \Gamma_{m u} \in \Gamma_{\text {totally symmetric }} \text { and } Q_{i} \notin \Gamma_{\text {non-totally symmetric }}
$$

Formaldehyde

In the case of formaldehyde there is one additional atom beyond the water example in $\mathrm{C}_{2 \mathrm{v}}$. The symmetry of the C and O atoms are the same since they both lie along the symmetry axis. If we use group theory to construct SALCs we can use three different sets of symmetry adapted atomic orbitals and then combine them. However, we will use density functional theory in the next slide to obtain the states and energies.

Formaldehyde

We can see that the HOMO $\left(B_{1}\right)$ to LUMO (B_{2})
Transition is forbidden.
The direct product is A_{2}.

$\mathrm{C}_{2 \mathrm{v}}$	E	C_{2}	$\sigma_{\mathrm{v}(\mathrm{xz)}}$	$\sigma_{\mathrm{v}(\mathrm{yz)}}$
B_{1}	1	-1	1	-1
$\mathrm{~B}_{2}$	1	-1	-1	1
$\mathrm{~A}_{2}$	1	1	-1	-1

MO Irrep eV Occupation

1	a_{1}	-510.777	2.000
2	a_{1}	-271.620	2.000
3	a_{1}	-26.478	2.000
4	a_{1}	-15.675	2.000
5	b_{1}	-12.056	2.000
6	a_{1}	-10.884	2.000
7	b_{2}	-9.924	2.000
8	b_{1}	-6.190	2.000
9	b_{2}	-2.569	0.000
10	a_{1}	1.918	0.000
11	b_{1}	3.613	0.000
13	b_{2}	9.266	0.000

$8 B_{1}$
$9 \mathrm{~B}_{2}$
$7 B_{2}$

However, the $\operatorname{HOMO}\left(B_{1}\right)$ to $\operatorname{NLUMO}\left(A_{1}\right)$ is allowed. In that case the excitation radiation must be polarized along $x\left(B_{1}\right)$, since

$$
\mathrm{B}_{1} \otimes \mathrm{~B}_{1} \otimes \mathrm{~A}_{1}=\mathrm{A}_{1}
$$

Other allowed transitions include 7 -> 9 and 8 -> 11. The direct products are,

$$
\mathrm{B}_{1} \otimes \mathrm{~B}_{1}=\mathrm{A}_{1} \text { are } \mathrm{B}_{2} \otimes \mathrm{~B}_{2}=\mathrm{A}_{1}
$$

Note that a_{1} corresponds to z-polarization in $C_{2 v}$. Thus, these products tells us that the $\pi-\pi^{*}$ transition and $n-\pi^{*}$ transitions are allowed.

$\mathrm{C}_{2 \mathrm{v}}$	E	C_{2}	$\sigma_{\mathrm{v}(\mathrm{xz})}$	$\sigma_{\mathrm{v}(\mathrm{yz})}$	Rot	IR	Raman
A_{1}	1	1	1	1		z	$\mathrm{x}^{2}, \mathrm{y}^{2}, \mathrm{z}^{2}$
$\mathrm{~A}_{2}$	1	1	-1	-1	R_{z}		
B_{1}	1	-1	1	-1	R_{y}	x	
B_{2}	1	-1	-1	1	R_{x}	y	

Formaldehyde - an example of vibronic coupling

The electronic configuration is

$$
3 a_{1}^{2} 4 a_{1}^{2} 1 b_{2}^{2} 5 a_{1}^{2} 1 b_{1}^{2} 2 b_{2}^{2} 2 b_{1}^{0} 6 a_{1}^{0}
$$

The configurations and transitions are given in Table 1

$\tilde{X}^{1} A_{1}$	Transition	Type	eV
$\tilde{A}^{1} A_{2}$	$2 b_{1} \leftarrow 2 b_{2}$	$\pi^{*} \leftarrow n_{0}$	3.5
$\tilde{B}^{1} B_{2}$	$6 a_{1} \leftarrow 2 b_{2}$	$\sigma^{*} \leftarrow n_{0}$	7.1
${ }^{1} A_{1}$	$2 b_{1} \leftarrow 1 b_{1}$	$\pi^{*} \leftarrow \pi$	8.0
${ }^{1} B_{1}$	$2 b_{1} \leftarrow 5 a_{1}$	$\pi^{*} \leftarrow n \sigma$	9.45

The transition $\tilde{A}^{1} A_{2} \leftarrow \tilde{X}^{1} A_{1}$ is a $\pi^{*} \leftarrow n_{0}$ and is forbidden. The other three transitions are allowed.

Using the direct product to assess vibronic mechanism

The $\tilde{A} \leftarrow \tilde{X}$ transition can borrow oscillator strength from the other allowed transitions. One way to see this is to find if there is a mode whose direct product with the forbidden electronic excited state gives an irrep, which is the same as an allowed electronic excited state. We find that there are two possibilities:

$$
\begin{aligned}
& A_{2} \otimes \mathrm{~b}_{1}=B_{2} \\
& A_{2} \otimes \mathrm{~b}_{2}=B_{1}
\end{aligned}
$$

The b_{2} mode is v_{4}, an out-of-plane bending mode.

