
Vibronic coupling
The most fundamental level of approximation is known as the crude adiabatic (CA) 
approximation. In this approximation the nuclear of the electronic wave function are 
fixed at a value Q0.

)𝜓𝜓𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶(𝑟𝑟,𝑄𝑄) = 𝜓𝜓𝑛𝑛0(𝑟𝑟,𝑄𝑄0)𝜒𝜒𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶(𝑄𝑄

Q0 is a reference geometry, which may be the equilibrium position or a transition 
state in some cases.



The crude adiabatic approximation
The most fundamental level of approximation is known as the crude adiabatic (CA) 
approximation. In this approximation the nuclear of the electronic wave function are 
fixed at a value Q0.

)𝜓𝜓𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶(𝑟𝑟,𝑄𝑄) = 𝜓𝜓𝑛𝑛0(𝑟𝑟,𝑄𝑄0)𝜒𝜒𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶(𝑄𝑄

Q0 is a reference geometry, which may be the equilibrium position or a transition 
state in some cases.
𝜒𝜒𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶(𝑄𝑄) is the vibration-rotation wave function calculated from an approximate 
Schrodinger equation:

)𝑇𝑇 𝑄𝑄 + 𝑉𝑉 𝑄𝑄 + 𝜀𝜀𝑛𝑛0 𝑄𝑄0 + 𝜓𝜓𝑛𝑛0 𝑟𝑟,𝑄𝑄0 Δ𝑈𝑈 𝑟𝑟,𝑄𝑄 𝜓𝜓𝑛𝑛0 𝑟𝑟,𝑄𝑄0 𝜒𝜒𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 𝑄𝑄 = 𝐸𝐸𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶𝜒𝜒𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶(𝑄𝑄

Effective potential



Distortion along non-totally symmetric modes

Δ𝑈𝑈 = Δ𝑈𝑈 𝑟𝑟,𝑄𝑄0 + �
𝑖𝑖

𝜕𝜕Δ𝑈𝑈 𝑟𝑟,𝑄𝑄
𝜕𝜕𝑄𝑄𝑖𝑖

𝑄𝑄𝑖𝑖 + ⋯ℎ𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑟𝑟 𝑜𝑜𝑟𝑟𝑜𝑜𝑖𝑖𝑟𝑟

)𝑇𝑇 𝑄𝑄 + 𝑉𝑉 𝑄𝑄 + 𝜀𝜀𝑛𝑛0 𝑄𝑄0 + 𝜓𝜓𝑛𝑛0 𝑟𝑟,𝑄𝑄0 Δ𝑈𝑈 𝑟𝑟,𝑄𝑄 𝜓𝜓𝑛𝑛0 𝑟𝑟,𝑄𝑄0 𝜒𝜒𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 𝑄𝑄 = 𝐸𝐸𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶𝜒𝜒𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶(𝑄𝑄

The term ∆U is defined as 

The effective potential contains the term ∆U that represents the energy 
change upon distortional along a non-totally symmetric vibrational mode.

Δ𝑈𝑈 𝑟𝑟,𝑄𝑄 = 𝑈𝑈 𝑟𝑟,𝑄𝑄 − 𝑈𝑈 𝑟𝑟,𝑄𝑄0

We can expand ∆U in powers of the non-totally symmetric mode 
coordinate, i: 



Distortion along non-totally symmetric modes

Δ𝑈𝑈 ≈�
𝑖𝑖

𝜕𝜕Δ𝑈𝑈 𝑟𝑟,𝑄𝑄
𝜕𝜕𝑄𝑄𝑖𝑖

𝑄𝑄𝑖𝑖

And therefore

Note that Δ𝑈𝑈 𝑟𝑟,𝑄𝑄0 = 0 since

Δ𝑈𝑈 𝑟𝑟,𝑄𝑄 = 𝑈𝑈 𝑟𝑟,𝑄𝑄 − 𝑈𝑈 𝑟𝑟,𝑄𝑄0

We can also ignore the higher order terms. The expansion of ∆U in powers 
of the non-totally symmetric mode coordinates becomes

Δ𝑈𝑈 𝑟𝑟,𝑄𝑄0 = 𝑈𝑈 𝑟𝑟,𝑄𝑄0 − 𝑈𝑈 𝑟𝑟,𝑄𝑄0 = 0



The ∆U integral is evaluated using 𝜓𝜓𝑛𝑛0 𝑟𝑟,𝑄𝑄0 , which has a fixed nuclear 
coordinate and thus cannot contain the effect of distortion of the molecule.  
We can use perturbation theory present that effect:

𝜓𝜓𝑛𝑛𝑛𝑛 𝑟𝑟,𝑄𝑄 = 𝜓𝜓𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 𝑟𝑟,𝑄𝑄 + �
𝑚𝑚𝑚𝑚≠𝑛𝑛𝑛𝑛

𝜓𝜓𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 Δ𝑈𝑈 𝜓𝜓𝑚𝑚𝑚𝑚
𝐶𝐶𝐶𝐶

𝐸𝐸𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 − 𝐸𝐸𝑚𝑚𝑚𝑚
𝐶𝐶𝐶𝐶 𝜓𝜓𝑚𝑚𝑚𝑚

𝐶𝐶𝐶𝐶 𝑟𝑟,𝑄𝑄

= 𝜓𝜓𝑛𝑛𝑛𝑛0 𝑟𝑟,𝑄𝑄0 𝜒𝜒𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶(𝑄𝑄) + ∑𝑚𝑚∑𝑚𝑚𝑚𝑚≠𝑛𝑛𝑛𝑛
𝜒𝜒𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 𝜓𝜓𝑛𝑛0 Δ𝑈𝑈 𝜓𝜓𝑚𝑚0 𝜒𝜒𝑚𝑚𝑚𝑚

𝐶𝐶𝐶𝐶

𝐸𝐸𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶−𝐸𝐸𝑚𝑚𝑚𝑚
𝐶𝐶𝐶𝐶 𝜓𝜓𝑚𝑚𝑚𝑚

𝐶𝐶𝐶𝐶 𝑟𝑟,𝑄𝑄0 𝜒𝜒𝑚𝑚𝑚𝑚
𝐶𝐶𝐶𝐶 (𝑄𝑄)

{  } indicates an integral of r and Q (both electronic and nuclear)
(  ) indicates an integral over Q (nuclear only)

Indicates an integral over r (electronic only)
This is known as the Herzberg-Teller expansion.



We substitute ∆U in powers of the nuclear coordinate for the promoting modes, i.

Δ𝑈𝑈 ≈�
𝑖𝑖

𝜕𝜕Δ𝑈𝑈 𝑟𝑟,𝑄𝑄
𝜕𝜕𝑄𝑄𝑖𝑖

𝑄𝑄𝑖𝑖

We use ∆U to define the vibronic mixing coefficient

𝛾𝛾𝑛𝑛𝑛𝑛,𝑚𝑚𝑚𝑚
𝑖𝑖 =

𝜓𝜓𝑛𝑛0
𝜕𝜕Δ𝑈𝑈
𝜕𝜕𝑄𝑄𝑖𝑖

𝜓𝜓𝑚𝑚0 𝜒𝜒𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶|𝑄𝑄𝑖𝑖|𝜒𝜒𝑚𝑚𝑚𝑚
𝐶𝐶𝐶𝐶

𝐸𝐸𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 − 𝐸𝐸𝑚𝑚𝑚𝑚
𝐶𝐶𝐶𝐶



We substitute ∆U in powers of the nuclear coordinate for the promoting modes, i.

Δ𝑈𝑈 ≈�
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We use ∆U to define the vibronic mixing coefficient
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𝐶𝐶𝐶𝐶

The derivative 𝜕𝜕/𝜕𝜕𝑄𝑄 appears in the cross terms of the complete Hamiltonian that 
includes both electronic and nuclear motion. We invoke the Born-Oppenheimer 
approximation to eliminate the cross terms

𝐻𝐻𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = −
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We substitute ∆U in powers of the nuclear coordinate for the promoting modes, i.
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approximation to eliminate the cross terms
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We substitute ∆U in powers of the nuclear coordinate for the promoting modes, i.
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𝐶𝐶𝐶𝐶

When the two separate equations have been solved term that contain the derivative 
𝜕𝜕/𝜕𝜕𝑄𝑄 can be perturbations that couple states that are normally orthogonal.
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We substitute ∆U in powers of the nuclear coordinate for the promoting modes, i.
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The nuclear coordinate Q can couple two vibrational state wave functions if and only 
if they differ by one vibrational quantum. For example:

0|𝑄𝑄|1 = �
−∞

∞

𝜒𝜒0𝑄𝑄𝜒𝜒1𝑜𝑜𝑄𝑄 =
𝛼𝛼
𝜋𝜋

⁄1 2
�
−∞

∞

𝑖𝑖−𝛼𝛼 ⁄𝑄𝑄2 2𝑄𝑄 2𝛼𝛼𝑄𝑄𝑖𝑖−𝛼𝛼 ⁄𝑄𝑄2 2𝑜𝑜𝑄𝑄
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Δ𝑈𝑈 ≈�
𝑖𝑖

𝜕𝜕Δ𝑈𝑈 𝑟𝑟,𝑄𝑄
𝜕𝜕𝑄𝑄𝑖𝑖

𝑄𝑄𝑖𝑖

We use ∆U to define the vibronic mixing coefficient

𝛾𝛾𝑛𝑛𝑛𝑛,𝑚𝑚𝑚𝑚
𝑖𝑖 =

𝜓𝜓𝑛𝑛0
𝜕𝜕Δ𝑈𝑈
𝜕𝜕𝑄𝑄𝑖𝑖

𝜓𝜓𝑚𝑚0 𝜒𝜒𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶|𝑄𝑄𝑖𝑖|𝜒𝜒𝑚𝑚𝑚𝑚
𝐶𝐶𝐶𝐶

𝐸𝐸𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 − 𝐸𝐸𝑚𝑚𝑚𝑚
𝐶𝐶𝐶𝐶

The nuclear coordinate Q can couple two vibrational state wave functions if and only 
if they differ by one vibrational quantum. For example:

0|𝑄𝑄|1 =
1
2𝛼𝛼

=
ℏ

2𝜇𝜇𝜇𝜇



We substitute ∆U in powers of the nuclear coordinate for the promoting modes, i.

Δ𝑈𝑈 ≈�
𝑖𝑖

𝜕𝜕Δ𝑈𝑈 𝑟𝑟,𝑄𝑄
𝜕𝜕𝑄𝑄𝑖𝑖

𝑄𝑄𝑖𝑖

We use ∆U to define the vibronic mixing coefficient

𝛾𝛾𝑛𝑛𝑛𝑛,𝑚𝑚𝑚𝑚
𝑖𝑖 =

𝜓𝜓𝑛𝑛0
𝜕𝜕Δ𝑈𝑈
𝜕𝜕𝑄𝑄𝑖𝑖

𝜓𝜓𝑚𝑚0 𝜒𝜒𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶|𝑄𝑄𝑖𝑖|𝜒𝜒𝑚𝑚𝑚𝑚
𝐶𝐶𝐶𝐶

𝐸𝐸𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 − 𝐸𝐸𝑚𝑚𝑚𝑚
𝐶𝐶𝐶𝐶

Substituting the coefficient into the expression above we can write it in a compact 
form.

𝜓𝜓𝑛𝑛𝑛𝑛 𝑟𝑟,𝑄𝑄 = 𝜓𝜓𝑛𝑛𝑛𝑛0 𝑟𝑟,𝑄𝑄0 𝜒𝜒𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶(𝑄𝑄) + �
𝑖𝑖

�
𝑚𝑚

�
𝑚𝑚𝑚𝑚≠𝑛𝑛𝑛𝑛

𝛾𝛾𝑛𝑛𝑛𝑛,𝑚𝑚𝑚𝑚
𝑖𝑖 𝜓𝜓𝑚𝑚𝑚𝑚

0 𝑟𝑟,𝑄𝑄0 𝜒𝜒𝑚𝑚𝑚𝑚
𝐶𝐶𝐶𝐶 (𝑄𝑄)

The coefficient 𝛾𝛾𝑛𝑛𝑛𝑛,𝑚𝑚𝑚𝑚
𝑖𝑖 will vanish unless

Γ𝑛𝑛𝑛𝑛 ⊗ Γ𝑚𝑚𝑚𝑚 ∈ Γ𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐𝑡𝑡 𝑠𝑠𝑡𝑡𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝐵𝐵𝑖𝑖𝑐𝑐 𝑎𝑎𝑎𝑎𝑜𝑜 𝑄𝑄𝑖𝑖 ∉ Γ𝑛𝑛𝑐𝑐𝑛𝑛−𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐𝑡𝑡 𝑠𝑠𝑡𝑡𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝐵𝐵𝑖𝑖𝑐𝑐



C
HH

O

Formaldehyde

In the case of formaldehyde there is one additional atom 
beyond the water example in C2v. The symmetry of the C and O 
atoms are the same since they both lie along the symmetry axis.  
If we use group theory to construct SALCs we can use three 
different sets of symmetry adapted atomic orbitals and then 
combine them. However, we will use density functional theory in 
the next slide to obtain the states and energies.



C
HH

O

MO  Irrep    eV      Occupation
1    a1 -510.777     2.000    
2    a1 -271.620     2.000    
3    a1 -26.478      2.000    
4    a1 -15.675      2.000    
5    b1 -12.056      2.000    
6    a1 -10.884      2.000    
7    b2 -9.924       2.000    
8    b1 -6.190       2.000    
9    b2 -2.569       0.000    

10    a1 1.918      0.000    
11    b1 3.613      0.000    
13    b2 9.266      0.000 

C2v E C2 σv(xz) σv(yz)
B1 1 -1 1 -1
B2 1 -1 -1 1
A2 1 1 -1 -1

Formaldehyde

We can see that the 
HOMO (B1) to LUMO (B2)
Transition is forbidden.
The direct product is A2. 



8 B1

7 B2 10 A1

9 B2



C2v E C2 σv(xz) σv(yz)
A1 1 1 1 1
A2 1 1 -1 -1
B1 1 -1 1 -1
B2 1 -1 -1 1

However, the HOMO (B1) to NLUMO (A1) is allowed.  In that case the 
excitation radiation must be polarized along x (B1), since

B1⨂ B1⨂ A1  = A1

Other allowed transitions include 7 -> 9 and 8 -> 11. The direct products 
are,

B1⨂ B1  = A1   are    B2 ⨂ B2 = A1
Note that a1 corresponds to z-polarization in C2v.  Thus, these products 
tells us that the π−π* transition and n-π* transitions are allowed.

Rot IR Raman
z x2, y2, z2

Rz

Ry x
Rx y



Formaldehyde – an example of vibronic coupling
The electronic configuration is

3𝑎𝑎124𝑎𝑎121𝑏𝑏225𝑎𝑎121𝑏𝑏122𝑏𝑏222𝑏𝑏106𝑎𝑎10

The configurations and transitions are given in Table 1

�𝑋𝑋1𝐴𝐴1 Transition Type eV
�̃�𝐴1𝐴𝐴2 2𝑏𝑏1 ← 2𝑏𝑏2 𝜋𝜋∗ ← 𝑎𝑎0 3.5
�𝐵𝐵1𝐵𝐵2 6𝑎𝑎1 ← 2𝑏𝑏2 𝜎𝜎∗ ← 𝑎𝑎0 7.1
1𝐴𝐴1 2𝑏𝑏1 ← 1𝑏𝑏1 𝜋𝜋∗ ← 𝜋𝜋 8.0
1𝐵𝐵1 2𝑏𝑏1 ← 5𝑎𝑎1 𝜋𝜋∗ ← 𝑎𝑎𝜎𝜎 9.45

The transition  �̃�𝐴1𝐴𝐴2 ← �𝑋𝑋1𝐴𝐴1 is a 𝜋𝜋∗ ← 𝑎𝑎0 and is forbidden. The other three 
transitions are allowed.  



𝐴𝐴2 ⊗ b1 = 𝐵𝐵2
𝐴𝐴2 ⊗ b2 = 𝐵𝐵1

The �̃�𝐴 ← �𝑋𝑋 transition can borrow oscillator strength from the other allowed 
transitions. One way to see this is to find if there is a mode whose direct 
product with the forbidden electronic excited state gives an irrep, which is the 
same as an allowed electronic excited state. We find that there are two 
possibilities:

The b2 mode is ν4, an out-of-plane bending mode.

Using the direct product to assess vibronic mechanism
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