Given the energy levels in the two-level system shown in the diagram below.

a. Write an expression for the molecular partition function of a two level system

$$
\mathrm{q}=1+\mathrm{e}^{-\beta \varepsilon}
$$

b. What is the magnitude of the partition function at $\mathrm{T}=0 \mathrm{~K}$?

$$
\mathrm{q}=1
$$

c. What is the magnitude of the partition function at $\mathrm{T}=\infty \mathrm{K}$?

$$
q=2
$$

d. If $\varepsilon=1000 \mathrm{~cm}^{-1}$, at what temperature is the probability of the upper level equal to 0.25 ?

$$
\begin{aligned}
& \mathrm{P}= \mathrm{e}^{-\beta \varepsilon} /\left(1+\mathrm{e}^{-\beta \varepsilon}\right)=0.25 \rightarrow \mathrm{e}^{-\beta \varepsilon}=0.25\left(1+\mathrm{e}^{-\beta \varepsilon}\right)=0.25+0.25 \mathrm{e}^{-\beta \varepsilon} \rightarrow 0.75 \mathrm{e}^{-\beta \varepsilon}=0.25 \\
& \mathrm{e}^{-\beta \varepsilon}=1 / 3 \rightarrow-\beta \varepsilon=\ln (1 / 3) \rightarrow-\beta \varepsilon=-\ln (3) \rightarrow \beta \varepsilon=1.098 \rightarrow \varepsilon=1.098^{*} \mathrm{kT} \\
& \mathrm{~T}=\varepsilon / 1.098^{*} \mathrm{k}=(1000 \mathrm{~cm}-1) / 1.098 /\left(0.695 \mathrm{~cm}^{-1} \mathrm{~K}^{-1}\right)=1310 \mathrm{~K}
\end{aligned}
$$

