ORTH CAROLINA STATE UNIVERSITY

Department of Chemistry Physical Chemistry CH437 Name_

Problem Set #5 Due Date: September 29, 2015

Part I.

- A. Construct SALCs for trigonal planar BH₃, using the H 1s orbitals as a basis. Call these orbitals h₁, h₂, and h₃, as an abbreviation. B. Use the character table to determine which 2s and 2p orbitals on the B atom can give rise to SALCs that will bond with the hydrogen atoms.
- 3. Compare the energies of butadiene and cyclobutadiene. What can you say about the stabilization of the π -electrons in a 4-membered ring? Comment on how this result relates to the aromatic stabilization of π -systems.
- 4. CH₄ belongs to the T_d point group. What irreducible representations do the 4 1s orbitals of H span in the molecule CH₄? Are there any matching irreducible representations spanned by the 2s and 2p orbitals on the central carbon atom? Based on this analysis list the possible irreducible representations of MOs of methane.
- 5. Determine the irreducible representations of the vibrations of pyridine. Separate the translational and rotational degrees of freedom from the vibrational degrees of freedom. Which modes are infrared active? What are the polarizations of the transitions? Which modes are Raman active? Which elements of the Raman tensor contribute?

Part II.

Work the following Problems in Atkins and DePaula, 12.2a, 12.9a, 12.10b