NORTH CAROLINA STATE UNIVERSITY

Department of Chemistry
Physical Chemistry CH437

Name \qquad
Problem Set \#2
Due Date: September 4, 2015

1. Using formulae for the associated LeGendre polynomial determine the rotational transition moment for the transition from $\ell=1$ to $\ell=2$. This derives from the general selection rule $\Delta \ell=1$ or -1 and $\Delta \mathrm{m}=0$.

$$
\left(1-x^{2}\right) \frac{\partial^{2} P(x)}{\partial x^{2}}-2 x \frac{\partial P(x)}{\partial x}+\left(\ell(\ell+1)-\frac{m^{2}}{1-x^{2}}\right) P(x)=0
$$

You may assume the case of $m=0$. For this case the Legendre polynomials are:

$$
\begin{array}{ll}
\mathrm{P}_{0}(\mathrm{x})=1 & \mathrm{P}_{2}(\mathrm{x})=1 / 2\left(3 \mathrm{x}^{2}-1\right) \\
\mathrm{P}_{1}(\mathrm{x})=\mathrm{x} & \mathrm{P}_{3}(\mathrm{x})=1 / 2\left(5 \mathrm{x}^{3}-3 \mathrm{x}\right)
\end{array}
$$

2. Consider two masses m_{1} and m_{2} in one dimension, interacting through a potential that depends only upon their relative separation ($x_{1}-x_{2}$), so that $V\left(x_{1}, x_{2}\right)=V\left(x_{1}-x_{2}\right)$. Given that the force acting upon the jth particle is $f_{j}=-\left(\partial \mathrm{V} / \partial \mathrm{x}_{\mathrm{j}}\right)$, show that $\mathrm{f} 1=-\mathrm{f} 2$. Show your work throughout this problem.
A. What physical law is this?

Newton's equations for m_{1} and m_{2} are:

$$
m_{1} \frac{d^{2} x_{1}}{d t^{2}}=-\frac{\partial V}{\partial x_{1}} \text { and } m_{2} \frac{d^{2} x_{2}}{d t^{2}}=-\frac{\partial V}{\partial x_{2}}
$$

Now introduce center-of-mass and relative coordinates by:

$$
X=\frac{m_{1} x_{1}+m_{2} x_{2}}{M}, \quad x=x_{1}-x_{2}
$$

where $\mathrm{M}=\mathrm{m}_{1}+\mathrm{m}_{2}$, and solve for x_{1} and x_{2} to obtain:

$$
x_{1}=X+\frac{m_{2}}{M} x, x_{2}=X+\frac{m_{1}}{M} x
$$

Show that Newton's equations in these coordinates are:

$$
m_{1} \frac{d^{2} X}{d t^{2}}+\frac{m_{1} m_{2}}{M} \frac{d^{2} x}{d t^{2}}=-\frac{\partial V}{\partial x}
$$

and

$$
m_{2} \frac{d^{2} X}{d t^{2}}-\frac{m_{1} m_{2}}{M} \frac{d^{2} x}{d t^{2}}=+\frac{\partial V}{\partial x}
$$

Now add these equations to find

$$
M \frac{d^{2} X}{d t^{2}}=0
$$

B. Interpret this result.

Now divide the first equation by m_{1} and the second by m_{2} and subtract to obtain:

$$
\frac{d^{2} x}{d t^{2}}=-\left(\frac{1}{m_{1}}+\frac{1}{m_{2}}\right) \frac{\partial V}{\partial x}
$$

Or

$$
\mu \frac{d^{2} x}{d t^{2}}=-\frac{\partial V}{\partial x}
$$

Give the definition of μ.
C. Interpret this result and discuss how the original two-body problem has been reduced to two one-body problems.
3. Calculate the expectation value (average value of $<r>$ (i.e. the mean radius) for the normalized 2 s and 2 p wavefunctions. You will need the following integral.

$$
\int_{0}^{\infty} \mathrm{r}^{\mathrm{n}} \mathrm{e}^{-\mathrm{ar}} \mathrm{dr}=\frac{\mathrm{n}!}{\mathrm{a}^{\mathrm{n}+1}}
$$

4. The root-mean-square motion of a harmonic oscillator is given by:

$$
\sqrt{\left\langle Q^{2}>_{0}\right.}=\sqrt{\int_{-\infty}^{\infty} \chi_{0} Q^{2} \chi_{0} d Q}
$$

Using a general formula for the r.m.s. motion of a harmonic oscillator in quantum level v , determine the change in amplitude of motion of the diatomic CO for the transition from $\mathrm{v}=0$ to $v=1$. Assume that the vibrational frequency of is $2143 \mathrm{~cm}^{-1}$.

