Quantum Chemistry

Lecture 6 Group Theory

Construction of Character Tables Orbital and Cartesian bases Transition moments

NC State University

Construction of the character table

In most character tables, C_{2v} has the following form:

C _{2v}	E	C ₂	$\sigma_{v}(xz)$	$\sigma_{v}'(yz)$		
A_1	1	1	1	1	Z	x^2, y^2, z^2
A ₂	1	1	-1	-1	R _z	xy
B ₁	1	-1	1	-1	x, R _y	XZ
B ₂	1	-1	-1	1	y, R _x	yz

We will consider how the various basis functions x, y, z and others in the right hand columns map onto the basis Vectors of the space (also known as irreducible representations). These are the A_1 , A_2 , B_1 and B_2 .

The totally symmetric basis vector

As an example we will consider the C_{2v} point group, which corresponds to the H₂O molecule for instance. We can call the totally symmetry basis vector A₁ as shown in Table 1. A₁ is just a name like, X, Y or Z for the Cartesian space.

The basis vectors must be normalized and orthogonal. Normalization is like saying that these are unit vectors in the space. The dimensionality of the basis must also equal the dimensionality of the space. The C_{2v} point group is 4-dimensional (i.e. there are four symmetry elements). To determine the dimensionality of any point group we need only count the symmetry operations.

The normalization condition

Is A_1 normalized (i.e. does it have a length of 1)? We will sum over the square of the contribution for each symmetry element and then divide by the dimension of the group h. The length L is

$$|S|^2 = \frac{1}{h} \sum_{i=1}^h \chi_i^2$$

where S is the basis vector name and χ is the character or value of each symmetry operation for that particular basis vector. We can see that A₁ is normalized.

$$|A_1|^2 = \frac{1}{4}(1^2 + 1^2 + 1^2 + 1^2) = 1$$

The other basis vectors must be orthogonal to A_1 and also normalized. We could find these vectors using four equations and four unknowns.

Starting point for construction

We will call the remaining vectors A_2 , B_1 and B_2 . Based on the information we have up to now we can construct a table of the basis vectors that looks like this.

C _{2v}	E	C ₂	$\sigma_{v(xz)}$	$\sigma_{v(vz)}$
A_1	1	1	1	1
A_2	1			
B ₁	1			
B ₂	1			

One formal way to find the remaining elements of the table is to use 9 unknown values that fill the table and then to set up nine equations based normalization, orthogonality and the sum rule that each column (except E) sums to zero. However, we will invoke an intuitive approach to find the basis vectors.

The normalization condition for A₂

The subscript refers to whether a basis vector changes sign upon reflection. The letter describes whether it changes sign upon rotation. A does not change upon rotation, but B does. 1 does not change sign upon reflection, but 2 does. Thus, A₂ does not change sign upon rotation (C₂ = 1), but it does change sign upon reflection, i.e $\sigma_{v(xz)} = \sigma_{v(yz)} = -1$

C _{2v}	E	C ₂	$\sigma_{v(xz)}$	$\sigma_{v(vz)}$
A_1	1	1	1	1
A_2	1	1	-1	-1
B ₁	1			
B ₂	1			

We can see that A_2 is normalized sine

$$|A_2|^2 = \frac{1}{4}(1^2 + 1^2 + (-1)^2 + (-1)^2) = 1$$

The orthonality is given by

$$|S_1||S_2| = \frac{1}{h} \sum_{i=1}^{h} \chi_{1i} \chi_{2i}$$

which is explicitly given by

$$|A_1||A_2| = \frac{1}{4} ((1)(1) + (1)(1) + (1)(-1) + (1)(-1)) = 0$$

Next we consider the B basis vectors, which should change sign upon rotation.

C _{2v}	E	C ₂	$\sigma_{v(xz)}$	$\sigma_{v(vz)}$
A_1	1	1	1	1
A_2	1	1	-1	-1
B ₁	1	-1		
B_2	1	-1		

The orthonormal basis in C_{2v}

C _{2v}	E	C ₂	$\sigma_{v(xz)}$	$\sigma_{v(vz)}$
A_1	1	1	1	1
A_2	1	1	-1	-1
B ₁	1	-1	1	-1
B ₂	1	-1	-1	1

Let's generate the C_{3v} point group.

The operations of C_{3v} are E, $2C_3$, $3\sigma_v$ (h=6, m=3)

$$d_1^2 + d_2^2 + d_3^2 = 6$$

 $d_1 = d_2 = 1$ and $d_3 = 2$

Since the dimensions of the irreps are the $\chi(E)$ and every group contains the totally symmetric irrep,

C _{3v}	1 E	2 C ₃	$3\sigma_{v}$
Γ_1	1	1	1
Γ_2	1	j	k
Γ ₃	2	m	n

```
Orthogonality of \Gamma_1 with \Gamma_2:
(1)(1)(1) + (2)(1)(j) + (3)(1)(k) = 0
1 + 2j + 3k = 0
j = +1 and k = -1
```

Normalization of Γ_3 means $(1)(2)^2 + 2(m^2) + 3(n^2) = 6$ so, m = -1 and n =0.

C _{3v}	1 E	2 C ₃	$3\sigma_{ m v}$
Γ_1	1	1	1
Γ_2	1	1	-1
Γ_3	2	-1	0

For C_{3v} ,

C _{3v}	1 E	2 C ₃	$3\sigma_{ m v}$
A ₁	1	1	1
A ₂	1	1	-1
Е	2	-1	0

Treating rotations and binary products as before, we can represent the C_{3v} point group as

C _{3v}	E	2C ₃	$3\sigma_v$		
A_1	1	1	1	Z	x^2+y^2 ; z^2
A ₂	1	1	-1	R _z	
E	2	-1	0	$(x,y);(R_x,R_y)$	$(x^2-y^2,xy);(xz,yz)$

The x^2-y^2 and xy orbitals are also degenerate as are the xz and yz orbitals

Concept of a basis

A basis refers to a type of function that is transformed by the symmetry operations of a point group. Examples include the spherical harmonics, vectors, internal coordinates (e..g bonds, angles, torsions), translations, rotations and any other function needed to describe the electronic or nuclear properties of a molecule.

The spherical harmonics include the orbitals, s, p, d etc. and can have more than one dimension. Thus, we need to examine how those functions are changed by the operations.

Based on this treatment we can assign the basis to one of the irreducible representations of the point group.

Orbital basis

Oxygen s-orbitals in water,

C _{2v}	E	C ₂	σ_{v}	σ_{v}
$\Gamma_{O(s)}$	+1	+1	+1	+1

$$\Gamma_{O(s)} = a_1$$

s-orbitals on central elements will always transform as the totally symmetric representation but are not included in character tables

Oxygen p-orbitals in water,

Thus, $\Gamma_p = a_1 + b_1 + b_2$. The p_x orbital is said to

- form the basis for the b_1 representation,
- have b₁ symmetry, or
- transform as b₁

Translation basis Cartesian basis Translations along the x, y and z directions (x, y, z) transform in the same way as p_x , p_y and p_z .

Thus,
$$\Gamma_{\text{trans}} = a_1 + b_1 + b_2$$

Rotation basis

Rotation of the water molecule,

Thus,
$$\Gamma_{\text{rot}} = a_2 + b_1 + b_2$$

Internal coordinates as a basis

The internal coordinates are

- •Stretch Δr
- •Bend $\Delta \theta$
- •Torsion $\Delta \tau$
- •Wag $\Delta \omega$

The advantages of this coordinate system are:

- Translation and rotation are eliminated.
- Force constant are defined in terms of bond stretches, valence angle bends, torsions, and wags. These quantities can be related to bond strengths and barriers for internal rotation.

Example of H₂O

For example, for H_2O we have the following internal coordinates.

The bond coordinates Δr_1 and Δr_2 transform as:

C _{2v}	E	C ₂	$\sigma_{v(xz)}$	$\sigma_{v(vz)}$
Γ	2	0	2	0

This is a reducible representation.

Mechanics of rotation about a 3-fold symmetry axis The ammonia molecule (C_{3v} point group) and the coordinate system is shown:

The **N-p_z orbital** is not changed by any of the operations of the group, *i.e.*, it is totally symmetric and transforms as a_1 However, p_x and p_y are neither symmetric nor antisymmetric with respect to the C_3 or σ_v operations, but rather go into linear combinations of one another and must therefore be considered together as components of a 2 dimensional representation.

The matrices in this irreducible representation will be 2x2 and not 1x1. The character of the identity operation will then be 2 (the trace of a 2x2 matrix with 1's on the diagonal), *i.e.*, $\chi(E)=2$. A rotation through an angle $2\pi/n$ can be represented by the following transformation:

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos(2\pi/n) & \sin(2\pi/n) \\ -\sin(2\pi/n) & \cos(2\pi/n) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

the trace of the C_n rotation matrix is $2\cos(2\pi/n)$ which for n=3 is $2\cos(2\pi/3) = 2(-0.5) = -1$, *i.e.*, $\chi(C_3) = -1$

The character for s_v can be determined by the effect of reflection through any one of the three s_v since they are all in the same class. Use $s_v(xz)$ which results in $p_x \rightarrow p_x$ and $p_v \rightarrow -p_v$ or,

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \xrightarrow{H^{\text{product}} H} \xrightarrow{H^{\text{product}} H} \xrightarrow{P_{\text{product}} H}$$

The transformation properties of the p_x and p_y orbitals are represented as,

$$\begin{array}{|c|c|c|c|c|}\hline C_{3v} & E & 2C_3 & 3\sigma_v \\ \hline \Gamma_{px,py} & 2 & -1 & 0 \\ \hline \end{array}$$

$$\Gamma_{px,py} = \mathbf{e}$$

The p_x and p_y orbitals are degenerate in C_{3v} symmetry and are taken **together** to form a basis for the two-dimensional irreducible representation, **e**.

Decomposing Reducible Representations

In the determination of molecular orbital or vibrational symmetries, a reducible representation is generated from an appropriate basis set and then decomposed into its constituent irreducible representations.

$$a_i = \frac{1}{h} \sum_{R} g(R) \chi_i(R) \chi(R)$$

 a_i : the # of times that ith irrep appears in the reducible representation

h: the order of the group

R: an operation of the group

- g(R): the number of operations in the class
- $\chi_i(R)$: the character of the Rth operation in the ith irrep
- $\chi(R)$: the character of the Rth operation in the reducible representation

A general example of decomposition of a reducible representation

A reducible representation can also be called a vector in the space of the point group. In order to understand the application of point groups for problems in chemistry we need to have a general way to determine how the vector projects onto the space of the group. The space is defined in terms of the orthogonal basis vectors.

In the following we consider an example in the C_{3v} point group.

 $\Gamma_{red} = 7 \ 1 \ 1 \text{ of the } C_{3v} \text{ point group, which has an order of 6.}$

C _{3v}	1 E	2 C ₃	$3\sigma_{\rm v}$
A_1	1	1	1
$\Gamma_{\rm red}$	7	1	1

C_{3v}	1 E	2 C ₃	$3\sigma_{v}$
A_2	1	1	-1
$\Gamma_{\rm red}$	7	1	1

 $\begin{aligned} a(a_1) &= 1/6\{(1)(1)(7) + (2)(1)(1) + (3)(1)(1)\} = 1/6\{12\} = 2\\ a(a_2) &= 1/6\{(1)(1)(7) + (2)(1)(1) + (3)(-1)(1)\} = 1/6\{6\} = 1 \end{aligned}$

C _{3v}	1 E	2 C ₃	$3\sigma_{v}$
E	2	-1	0
$\Gamma_{\rm red}$	7	1	1

 $a(e) = 1/6\{(1)(2)(7) + (2)(-1)(1) + (3)(0)(+1)\} = 1/6\{12\} = 2$

The reducible representation is decomposed as:

$$\Gamma_{\rm red} = 2a_1 + a_2 + 2e$$

The results can be verified by adding the characters of the irreps,

C _{3v}	1 E	2 C ₃	$3\sigma_v$
2a ₁	2	2	2
a ₂	1	1	-1
2e	4	-2	0
Γ _{red}	7	1	1

Problem I.7 Decompose the following reducible representations of the C_{4v} point group.

C_{4v}	E	2C ₄	C ₂	$2\sigma_{\rm v}$	$2\sigma_{\rm d}$
Γ_1	11	1	-1	5	1
Γ_2	6	0	2	0	0
Γ_3	5	1	-3	-1	-1
Γ_4	4	-4	4	0	0

C		Sy	mmetry e	element	s for the	group	up Spectroscopy active compo		
	/	Е	2C ₄ (z)	C2	$2s_{V}$	$2s_{d}$	Microwave	IR	Raman
	A ₁	1	1	1	1	1		Z	$x^{2}+y^{2}, z^{2}$
	A ₂	1	1	1	-1	-1	Rz		
Symmetry label	B ₁	1	-1	1	1	-1			x ² -y ²
	B ₂	1	-1	1	-1	1			ху
	Е	2	0	-2	0	0	(R _x , R _y)	(x, y)	(xz, yz)

The reducible representation of the Cartesian displacement vectors for water was determined earlier and is given in the following table as Γ_{cart}

$$\Gamma_{\rm cart}(E) = 3N$$

Here is a shortcut for generating G_{cart} for any system: $\Gamma_{cart} = \Gamma_{unsh}\Gamma_{xyz} = \Gamma_{unsh}[\Gamma_x + \Gamma_y + \Gamma_z]$

C_{2v}	E	C ₂	$\sigma_{\rm v}$	σ'_{v}	
A_1	1	1	1	1	Z
A_2	1	1	-1	-1	R _z
B ₁	1	-1	1	-1	x, R _y
B ₂	1	-1	-1	1	y,R _x
$\Gamma_{\rm cart}$	9	-1	3	1	

C _{2v}	E	C ₂	σ_{v}	σ'_{v}	
A ₁	1	1	1	1	Z
A ₂	1	1	-1	-1	R _z
B ₁	1	-1	1	-1	x, R _y
B ₂	1	-1	-1	1	y,R _x
$\Gamma_{\rm cart}$	9	-1	3	1	

Decomposition of Γ_{cart} yields,

 $\begin{aligned} a(a_1) &= 1/4 \left\{ (1)(1)(9) + (1)(1)(-1) + (1)(1)(3) + (1)(1)(1) \right\} = 1/4 \left\{ 12 \right\} = 3 \\ a(a_2) &= 1/4 \left\{ (1)(1)(9) + (1)(1)(-1) + (1)(-1)(3) + (1)(-1)(1) \right\} = 1/4 \left\{ 4 \right\} = 1 \\ a(b_1) &= 1/4 \left\{ (1)(1)(9) + (1)(-1)(-1) + (1)(1)(3) + (1)(-1)(1) \right\} = 1/4 \left\{ 12 \right\} = 3 \\ a(a_2) &= 1/4 \left\{ (1)(1)(9) + (1)(-1)(-1) + (1)(-1)(3) + (1)(1)(1) \right\} = 1/4 \left\{ 8 \right\} = 2 \end{aligned}$

$$\Gamma_{\text{cart}} = 3\mathbf{a}_1 + \mathbf{a}_2 + 3\mathbf{b}_1 + 2\mathbf{b}_2$$

Of these 3N degrees of freedom, three are translational, three are rotational and the remaining 3N-6 are the vibrational degrees of freedom.

Thus, to get the symmetries of the vibrations, the irreducible representations of translation and rotation need only be subtracted from Γ_{cart} , but the irreps of rotation and translation are available from the character table.

For the water molecule,

$$\Gamma_{vib} = \Gamma_{cart} - \Gamma_{trans} - \Gamma_{rot}$$

= {3a₁ + a₂ + 3b₁ + 2b₂} - {a₁ + b₁ + b₂} - {a₂ + b₁ + b₂}
= 2a₁ + b₁

Problem I.8 Determine the symmetries of the vibrations of NH_3 , $PtCl_4^{2-}$ and SbF_5 .

Direct Products.

Direct Products: The representation of the product of two representations is given by the product of the characters of the two representations.

Verify that under C_{2v} symmetry $A_2 \otimes B_1 = B_2$

C_{2v}	E	C ₂	$\sigma_{\rm v}$	σ'_{v}
A_2	1	1	-1	-1
B_1	1	-1	1	-1
$A_2 B_1$	1	-1	-1	1

As can be seen above, the characters of A_2B_1 are those of the B_2 irrep. Verify that $A_2 B_2 = B_1$, $B_2 B_1 = A_2$

Also verify that

- the product of any non degenerate representation with itself is totally symmetric and
- the product of any representation with the totally symmetric representation yields the original representation

Note that,

A x B = B; while A x A = B x B = A
"1" x "2" = "2"; while "1" x "1" = "2" x "2" = "1"
g x u = u; while g x g = u x u = g.

Electronic Spectroscopy Application of Group Theory

• Ψ_{Tot} assumed separable, $\Psi_{Tot} = \psi_{MO}\psi_{vib} = |n\rangle|v\rangle$

• Overall orbital wavefunction is the **product** of occupied one electron wavefunctions, ϕ_{MO} : $\psi_{MO} = \Pi \phi_{MO}$

• If transition is not allowed by symmetry then vibronic coupling can be invoked as a perturbation. We can use group theory for both Franck-Condon an vibronic spectroscopy.

Selection Rules

Transition moment integral for ground state (gs) \Rightarrow excited state (es) is,

 $<\mu> = <gs|\mu|es>$

The state wavefunctions (orbital•vibrational) are:

|nv> (ground state)
|n'v'> (excited state)

The dipole operator is $(\mu = \mu_e)$ is independent of spin coordinates,

 $<\mu> = < nv|\mu_e| n'v'>$

The result is,

$$<\mu> = \{<\!\!v|v'\!\!><\!\!n|\mu_e|n'\!\!>\}$$

For electronic transitions, the initial vibrational state will *usually* be v=0, and

 $<\mu> = <0|v'><n|\mu_e|n'>$

The intensity of the transition is proportional to $<\mu>^2$, so,

$$\propto <\mu >^2 = <0|v'>^2 ^2$$

•<n' $|\mu_e|n>$ gives rise to the **orbital or symmetry selection rules**. If the direct product $\Gamma(n')$ $\Gamma(n)$ transforms as x, y, or z the electronic transition is said to be "x-polarized", "y-polarized" or "z-polarized", respectively.

•<0|v'> is the overlap of the vibrational wavefunctions in the ground (v=0) and excited electronic states. The $<v|v'>^2$ terms are referred to as the **Franck-Condon factors** and can modulate the intensity of the electronic transition.

If, during the electronic transition, a quantum of an asymmetric vibration is also absorbed, the symmetry of the molecule will change and the group theoretical selection rules may be relaxed and a forbidden transition may become "vibronically allowed". Thus the electronic state interacts with the vibration through *weak vibronic coupling*. For these *vibronic* systems, electronic and vibrational components of Ψ are not separable. Thus,

 $<\mu> = <n, v|\mu_e|n', v'>$

the symmetry of **vibronic states** given by the direct product of the orbital and vibrational irreps dictate the selection rules.

In centrosymmetric molecules, d-orbitals are always *gerade* while m is always *ungerade* so d-d transitions are orbitally or **Laporte** forbidden $\langle g | m | g \rangle = 0$. However, these transitions can be *vibronically allowed* through *ungerade* vibrations since in the v=1 level of an *ungerade* vibration, the molecule loses its center of symmetry and thus the selection rule is relaxed!!

 $< n'v' | m_e m_n | nv > \neq 0 \text{ means } \Gamma_{es} \Gamma_{vib} \Gamma_{xyz} \Gamma_{gs} \neq 0$

vibronically-active: $\Gamma_{\rm es}\Gamma_{\rm vib}\Gamma_{\rm xyz}$ must transform as $\Gamma_{\rm gs}$

In cases like this, the $v = 0 \rightarrow v' = 0$ band (the "origin" or 0-0 band) is not observed and the lowest energy peak maximum will be at E_{0-0} plus one quantum of excited state vibrational energy.

Such peaks are referred to as "false origins"

The lowest energy electric dipole *allowed* transition is from the v'=0 vibrational level of the ground electronic state to the v=0 vibrational level of the lowest energy excited electronic state. This transition is called the origin, or 0-0 ("zero-zero") band.

The lowest energy electric dipole *forbidden* transition is from the v'=0 vibrational level of the ground electronic state to the v=1 vibrational level of a vibronically-active mode of the lowest excited electronic state. This transition is called a false origin.

To be vibronically-active, the direct product of a mode with the with the irreps of m *and* with the excited state irrep must transform as the ground state irrep.

Types of Electronic Transitions

Electronic transitions are governed by the Franck-Condon principle:

Electron motion is so much faster than nuclear motion that electronic transitions involve no change in either positions or momenta of nuclei. • FC principle: transitions are "vertical". most originate from Q=0 of v=0

• If the excited state equilibrium geometry is different than the ground state geometry, then a vertical transition to the v=0 level may be improbable, *i.e.*, the 0-0 transition may be very weak or missing.

• The larger the value of v, however, the greater will be <0|v'>. Therefore, the strongest transitions other than 0-0 bands will occur when the transitions are to the extrema of the internuclear separations.