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In most character tables, C2v has the following form:

C2v E C2 v(xz) v'(yz)

1 1 1 1 1 z x2, y2, z2

2 1 1 -1 -1 Rz xy

1 1 -1 1 -1 x, Ry xz

2 1 -1 -1 1 y, Rx yz

We will consider how the various basis functions x, y, z

and others in the right hand columns map onto the basis

Vectors of the space (also known as irreducible

representations). These are the A1, A2, B1 and B2.

Construction of the character table



C2v E C2 v(xz) v(yz)

A1 1 1 1 1

As an example we will consider the C2v point group, which 

corresponds to the H2O molecule for instance. We can call 

the totally symmetry basis vector A1 as shown in Table 1. 

A1 is just a name like, X, Y or Z for the Cartesian space. 

The basis vectors must be normalized and orthogonal. 

Normalization is like saying that these are unit vectors in the 

space. The dimensionality of the basis must also equal the

dimensionality of the space. The C2v point group is 4-dimensional 

(i.e. there are four symmetry elements). To determine the 

dimensionality of any point group we need only count the 

symmetry operations.  

The totally symmetric basis vector



Is A1 normalized (i.e. does it have a length of 1)?  We will sum 

over the square of the contribution for each symmetry element 

and then divide by the dimension of the group h. The length L is 

where S is the basis vector name and c is the character or value 

of each symmetry operation for that particular basis vector. 

We can see that A1 is normalized.

The other basis vectors must be orthogonal to A1 and also 

normalized. We could find these vectors using four 

equations and four unknowns. 

The normalization condition



C2v E C2 v(xz) v(yz)

A1 1 1 1 1

A2 1

B1 1

B2 1

We will call the remaining vectors A2, B1 and B2. Based on the 

information we have up to now we can construct a table of the 

basis vectors that looks like this.

One formal way to find the remaining elements of the table is to 

use 9 unknown values that fill the table and then to set up nine 

equations based normalization, orthogonality and the sum rule 

that each column (except E) sums to zero. However, we will 

invoke an intuitive approach to find the basis vectors.

Starting point for construction



C2v E C2 v(xz) v(yz)

A1 1 1 1 1

A2 1 1 -1 -1

B1 1

B2 1

The subscript refers to whether a basis vector changes 

sign upon reflection.  The letter describes whether it changes 

sign upon rotation. A does not change upon rotation, but B 

does. 1 does not change sign upon reflection, but 2 does. 

Thus, A2 does not change sign upon rotation (C2 = 1), but it 

does change sign upon reflection, i.e v(xz) = v(yz) = -1

We can see that A2 is normalized sine

The normalization condition for A2



The orthonality is given by

which is explicitly given by

Next we consider the B basis vectors, which should 

change sign upon rotation.

C2v E C2 v(xz) v(yz)

A1 1 1 1 1

A2 1 1 -1 -1

B1 1 -1

B2 1 -1



C2v E C2 v(xz) v(yz)

A1 1 1 1 1

A2 1 1 -1 -1

B1 1 -1 1 -1

B2 1 -1 -1 1

The orthonormal basis in C2v



Let’s generate the C3v point group.

The operations of C3v are E, 2C3, 3v (h=6, m=3)

d1
2 + d2

2 + d3
2 = 6

d1 = d2 = 1 and d3 = 2.

Since the dimensions of the irreps are the c(E) and every

group contains the totally symmetric irrep,

C3v 1E 2C3 3v

1 1 1 1

2 1 j k

3 2 m n



Orthogonality of 1 with 2:

(1)(1)(1) + (2)(1)(j) + (3)(1)(k) = 0

1 + 2j + 3k = 0

j = +1 and k = -1

Normalization of 3 means (1)(2)2 + 2(m2) + 3(n2) = 6

so, m = -1 and n =0.

C3v 1E 2C3 3v

1 1 1 1

2 1 1 -1

3 2 -1 0



For C3v,

C3v 1E 2C3 3v

1 1 1 1

2 1 1 -1

 2 -1 0



Treating rotations and binary products as before, we

can represent the C3v point group as

C3v E 2C3 3v

1 1 1 1 z x2+y2; z2

2 1 1 -1 Rz

 2 -1 0 (x,y);(Rx,Ry) (x2-y2,xy);(xz,yz)

The x2-y2 and xy orbitals are also degenerate as are the

xz and yz orbitals



Concept of a basis

A basis refers to a type of function that is transformed by

the symmetry operations of a point group.  Examples include

the spherical harmonics, vectors, internal coordinates

(e..g bonds, angles, torsions), translations, rotations and 

any other function needed to describe the electronic or nuclear

properties of a molecule.

The spherical harmonics include the orbitals, s, p, d etc. 

and can have more than one dimension.  Thus, we need to

examine how those functions are changed by the operations.

Based on this treatment we can assign the basis to

one of the irreducible representations of the point group. 



Orbital basis



Oxygen s-orbitals in water,

C2v E C2 v v'

O(s) +1 +1 +1 +1

s-orbitals on central elements will always transform as the 

totally symmetric representation but are not included in 

character tables

I

O(s) = a1



E C2 v(xz) v(yz)

pz



E C2 v(xz) v(yz)

1                         1                          1                            1

pz



E C2 v(xz) v(yz)

px



E C2 v(xz) v(yz)

1                         -1                          1                            -1

px



Oxygen p-orbitals in water,

C2v E C2 v(xz) v'(yz)

pz +1 +1 +1 +1 a1

px +1 -1 +1 -1 b1

py +1 -1 -1 +1 b2

p 3 -1 1 1

Thus, p = a1 + b1 + b2. The px orbital is said to

• form the basis for the b1 representation,

• have b1 symmetry, or

• transform as b1

px pypz



Translation basis

Cartesian basis



Translations along the x, y and z directions (x, y, z) 

transform in the same way as px, py and pz.  

C2v E C2 v(xz) v'(yz)

Tz +1 +1 +1 +1 a1

Ty +1 -1 -1 +1 b2

Tx +1 -1 +1 -1 b1

trans 3 -1 1 1

Thus, trans = a1 + b1 + b2

T(x) = 1  -1  1  -1

H

O

HH

O

H

z

x
yx

y



Rotation basis



E C2 v(xz) v(yz)

Rz



E C2 v(xz) v(yz)

1                          1                           -1                            -1

Rz



E C2 v(xz) v(yz)

Ry



E C2 v(xz) v(yz)

1                          -1                           1                            -1

Ry



Rotation of the water molecule,

C2v E C2 v(xz) v'(yz)

Rz +1 +1 -1 -1 a2

Rx +1 -1 -1 +1 b2

Ry +1 -1 +1 -1 b1

rot 3 -1 1 1

Thus, rot = a2 + b1 + b2

R(z) = 1  1  -1  -1

H

O

HH

O

H
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y



The internal coordinates are

•Stretch Dr

•Bend Dq

•Torsion Dt

•Wag Dw

The advantages of this coordinate system are:

• Translation and rotation are eliminated.

• Force constant are defined in terms of bond stretches, 

valence angle bends, torsions, and wags.  These quantities 

can be related to bond strengths and barriers for internal 

rotation.

Internal coordinates as a basis



For example, for H2O we have the following internal 

coordinates.

The bond coordinates Dr1 and Dr2 transform as:

This is a reducible representation.

Dr1 Dr2

Dq1

C2v E C2 v(xz) v(yz)

 2 0 2 0

Example of H2O



Mechanics of rotation about a 

3-fold symmetry axis



The ammonia molecule (C3v point group) and the 

coordinate system is shown:

The N-pz orbital is not changed by any of the operations of 

the group, i.e., it is totally symmetric and transforms as a1

However, px and py are neither symmetric nor antisymmetric

with respect to the C3 or v operations, but rather go into 

linear combinations of one another and must therefore be 

considered together as components of a 2 dimensional 

representation.  

The matrices in this irreducible representation will be 2x2 

and not 1x1.  The character of the identity operation will then 

be 2 (the trace of a 2x2 matrix with 1's on the diagonal), i.e., 

c(E)=2. 

N
HH

H

z

y
x HH

H
HH

H
HH

H

px py pz



A rotation through an angle 2/n can be represented by 

the following transformation: 

x'

y'











cos(2 / n) sin(2 / n)

-sin(2 / n) cos(2 / n)










x

y










the trace of the Cn rotation matrix  is 2cos(2/n) 

which for n=3 is 2cos(2/3) = 2(-0.5) = -1, i.e., 

c(C3) = -1

The character for sv can be determined by the 

effect of reflection through any one of the three sv

since they are all in the same class. 

Use sv(xz) which results in px  px and py  -py or, 

x'

y'











1 0

0 1










x

y










HH
H

HH
H

HH
H

px py pz

c(sv) = 0



The transformation properties of the px and py

orbitals are represented as,

C3v E 2C3 3v

px,py 2 -1 0

The px and py orbitals are degenerate in C3v symmetry and are

taken together to form a basis for the two-dimensional

irreducible representation, e.

px,py = e



Decomposing Reducible Representations

In the determination of molecular orbital or vibrational
symmetries, a reducible representation is generated from an
appropriate basis set and then decomposed into its constituent
irreducible representations.

ai 
1

h
g R 

R

 ci R c R 

ai: the # of times that ith irrep appears in the reducible
representation
h: the order of the group
R: an operation of the group
g(R): the number of operations in the class
ci(R): the character of the Rth operation in the ith irrep
c(R): the character of the Rth operation in the reducible
representation



A general example of decomposition of 
a reducible representation

A reducible representation can also be called a vector in the
space of the point group. In order to understand the application
of point groups for problems in chemistry we need to have 
a general way to determine how the vector projects onto
the space of the group.  The space is defined in terms of the
orthogonal basis vectors. 

In the following we consider an example in the C3v point group.



red = 7 1 1 of the C3v point group, which has an order of 6.

C3v 1E 2C3 3v C3v 1E 2C3 3v

1 1 1 1 2 1 1 -1

red 7 1 1 red 7 1 1

a(a1) = 1/6{(1)(1)(7)+(2)(1)(1)+(3)(1)(1)} = 1/6{12} = 2

C3v 1E 2C3 3v

E 2 -1 0

red 7 1 1

a(e) = 1/6{(1)(2)(7) + (2)(-1)(1) + (3)(0)(+1)} = 1/6{12} = 2

a(a2) = 1/6{(1)(1)(7)+(2)(1)(1)+(3)(-1)(1)} = 1/6{6} = 1



The reducible representation is decomposed as:

red = 2a1 + a2 + 2e

The results can be verified by adding the characters of

the irreps,

C3v 1E 2C3 3v

a1 2 2 2

a2 1 1 -1

2e 4 -2 0

red 7 1 1



Problem I.7 Decompose the following reducible representations of the C4v point group.

C4v E 2C4 C2 2v 2d

1 11 1 -1 5 1

2 6 0 2 0 0

3 5 1 -3 -1 -1

4 4 -4 4 0 0



The reducible representation of the Cartesian 

displacement vectors for water was determined earlier and 

is given in the following table as cart

cart(E) = 3N

Here is a shortcut for generating Gcart for any system:
cart = unshxyz = unsh[x + y + z]

C2v E C2 v 'v

A1 1 1 1 1 z

A2 1 1 -1 -1 Rz

B1 1 -1 1 -1 x, Ry

B2 1 -1 -1 1 y,Rx

cart 9 -1 3 1



C2v E C2 v 'v

A1 1 1 1 1 z

A2 1 1 -1 -1 Rz

B1 1 -1 1 -1 x, Ry

B2 1 -1 -1 1 y,Rx

cart 9 -1 3 1

Decomposition of cart yields,

a(a1) = 1/4 {(1)(1)(9) + (1)( 1)(-1) + (1)( 1)(3) + (1)( 1)(1)} = 1/4 {12} = 3

a(a2) = 1/4 {(1)(1)(9) + (1)( 1)(-1) + (1)(-1)(3) + (1)(-1)(1)} = 1/4 { 4} = 1

a(b1) = 1/4 {(1)(1)(9) + (1)(-1)(-1) + (1)( 1)(3) + (1)(-1)(1)} = 1/4 {12} = 3

a(a2) = 1/4 {(1)(1)(9) + (1)(-1)(-1) + (1)(-1)(3) + (1)( 1)(1)} = 1/4 { 8} = 2

cart = 3a1 + a2 + 3b1 + 2b2



Of these 3N degrees of freedom, three are translational, 

three are rotational and the remaining 3N-6 are the 

vibrational degrees of freedom.  

Thus, to get the symmetries of the vibrations, the 

irreducible representations of translation and rotation need 

only be subtracted from cart, but the irreps of rotation and 

translation are available from the character table.  

For the water molecule,  

vib = cart - trans - rot

= {3a1 + a2 + 3b1 + 2b2} - {a1 + b1 + b2} - {a2 + b1 + b2} 

= 2a1 + b1

Problem I.8  Determine the symmetries of the vibrations of NH3, PtCl4
2- and SbF5.



Direct Products.

Direct Products: The representation of the product of two 

representations is given by the product of the characters of 

the two representations.

Verify that under C2v symmetry A2  B1 = B2

C2v E C2 v 'v

A2 1 1 -1 -1

B1 1 -1 1 -1

A2 B1 1 -1 -1 1

As can be seen above, the characters of  A2B1 are those 

of the B2 irrep.



Verify that A2 B2 = B1, B2 B1= A2

Also verify that 

• the product of any non degenerate 

representation with itself is totally symmetric 

and 

• the product of any representation with the 

totally symmetric representation yields the 

original representation

Note that,

A x B = B;  while  A x A = B x B = A

"1" x "2" = "2”;  while  "1" x "1" = "2" x "2" = "1”

g x u = u; while g x g = u x u =g.



Electronic Spectroscopy  
Application of Group  Theory

• Tot assumed separable, Tot = MOvib = nv

• Overall orbital wavefunction is the product of occupied one 
electron wavefunctions, MO: MO = MO

• If transition is not allowed by symmetry then vibronic
coupling can be invoked as a perturbation. We can use group 
theory for both Franck-Condon an vibronic spectroscopy.  



Selection Rules
Transition moment integral for 
ground state (gs)  excited state (es) is,

 = gses

The state wavefunctions (orbital•vibrational) are:

nv (ground state)
n’v’ (excited state)

The dipole operator is ( = e) is independent of spin
coordinates,

 =  nve n’v’

The result is,

 = vv’nen’}



For electronic transitions, the initial vibrational state will usually
be v=0, and

 = 0v’nen’
The intensity of the transition is proportional to 2, so,

I  2 = 0v’2nen’2

n'en gives rise to the orbital or symmetry selection rules.
If the direct product n') n) transforms as x, y, or z the
electronic transition is said to be “x-polarized”, “y-polarized”
or “z-polarized”, respectively.

0v’ is the overlap of the vibrational wavefunctions in the
ground (v=0) and excited electronic states. The vv’2 terms
are referred to as the Franck-Condon factors and can
modulate the intensity of the electronic transition.



If, during the electronic transition, a quantum of an
asymmetric vibration is also absorbed, the symmetry of the
molecule will change and the group theoretical selection rules
may be relaxed and a forbidden transition may become
"vibronically allowed". Thus the electronic state interacts with
the vibration through weak vibronic coupling. For these
vibronic systems, electronic and vibrational components of 
are not separable. Thus,

 = n,ven’,v’

the symmetry of vibronic states given by the direct product of
the orbital and vibrational irreps dictate the selection rules.



In centrosymmetric molecules, d-orbitals are always gerade
while m is always ungerade so d-d transitions are orbitally or 
Laporte forbidden g m g However, these transitions 
can be vibronically allowed through ungerade vibrations since 
in the v=1 level of an ungerade vibration, the molecule loses 
its center of symmetry and thus the selection rule is relaxed!!  

<n'v'|memn|nv> ≠ 0 means esvibxyzgs ≠ 0

vibronically-active:  esvibxyz must transform as gs

In cases like this, the v = 0  v’ = 0 band (the “origin” or 0-0 
band) is not observed and the lowest energy peak maximum 
will be at E0-0 plus one quantum of excited state vibrational 
energy.

Such peaks are referred to as "false origins"



The lowest energy electric dipole allowed transition is 
from the v'=0 vibrational level of the ground 

electronic state to the v=0 vibrational level of the 
lowest energy excited electronic state.  This transition 

is called the origin, or 0-0 (“zero-zero”) band.

The lowest energy electric dipole forbidden
transition is from the v'=0 vibrational level of the 

ground electronic state to the v=1 vibrational level 
of a vibronically-active mode of the lowest excited 

electronic state.  This transition is called a false 
origin.

To be vibronically-active, the direct product of a mode with 
the with the irreps of m and with the excited state irrep

must transform as the ground state irrep.



Types of Electronic Transitions

Electronic transitions are governed by the Franck-
Condon principle:

Electron motion is so much faster than nuclear 
motion that electronic transitions involve no change 

in either positions or momenta of nuclei. 

A-D: ligand to metal charge transfer bands 
(LMCT)
E-F: metal to ligand charge transfer bands 
(MLCT)
G: d-d (Ligand Field) bands
H: ligand pp*



• FC principle: transitions are "vertical".
most originate from Q=0 of v=0

• If the excited state equilibrium geometry is different than
the ground state geometry, then a vertical transition to the
v=0 level may be improbable, i.e., the 0-0 transition may be
very weak or missing.

• The larger the value of v, however, the greater will be
<0|v’>. Therefore, the strongest transitions other than 0-0
bands will occur when the transitions are to the extrema of
the internuclear separations.


