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Review of Electrostatics

The Coulombic force on charge j due to charge i is:

The Coulombic force is additive.  The combined force is

a superposition.  The force on charge k due to a number

of charges with the index j is:

The constant e0 is the permittivity of vacuum.  In MKS units

the value is e0 = 8.854 x 10-12 C2 N-1 m-2.  In the cgs-esu

unit system the permittivity of free space is 1/4p and the

constant 1/4pe0 does not appear in the Coulomb force.
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Electric Field

The electric field is is the force per unit charge. The most

precise statement is that it is the force per unit charge in

the limit that the charge is infinitesimally small:

When applied to the Coulomb force the electric field 

becomes:
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Electrostatic Potential

The electric field is the negative gradient of the scalar

potential:

The potential at a distance r from a charge is:

The electric field represents the force per unit charge.

The potential is the work per unit charge.

In MKS units the potential has units of V where 1 V = 1 J/C.
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Potential and Field due to a Dipole
The potential due to a dipole is:

The assumption in this equation is that the distance between

the charge and dipole, r, is large relative to the separation of

charges in the dipole, d, r >> d.

The electric field due to a dipole is:

Using the expression W = -m.E we can calculate the interaction

energy of two dipoles.
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Example: Effect of Dipole Orientation
Consider two dipoles, which have the orientations below that

we can call aligned

and head-to-tail

Aligned:          m1
. m2 = m2 , m1

. r = m r , m2
. r = m r , W = -2m2/4pe0r

3

Head-to-tail:   m1
. m2 = -m2 , m1

. r = 0  , , m2
. r = 0 , W = -m2/4pe0r

3



Electric moments
The potential due to discrete charge distribution is:

If the distance R of the test charge is large relative to the 

distances between the charges then the expansion:

can be made
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Electric moments
The potential is then given by:

This is the multipole expansion.  The terms are the charge (also

called the monopole), q, the dipole, m, the quadrupole, Q, and

higher order terms.

q is a scalar,

m is a vector (a first rank tensor)

Q is a matrix (a second rank tensor)
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Interaction of electric moments 

with the electric field

The interaction of a collection of charges subjected to an

electric field is given by:

The picture is that of a charge interacting with the potential,

the dipole interacting with a field, the quadrupole interacting 

with the field gradient etc.

An electric field can exert a force:

or a torque:

on a collection of charges.

W = q – mE + 1
2
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Polarizability

In the presence of an externally applied electric field the 

eipole moment of the molecule can also be expressed

as an expansion in terms of moments:

The leading term in this expansion is the permanent dipole

moment, m0.  The polarizability is a tensor whose components

can be described as a follows:

Where the 0 subscript refers to the fact that the derivative is

Evaluated at zero field.  The b tensor is called the hyper-

polarizability and is third ranked tensor.
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Polarizability as second rank tensor

The dipole moment components each can depend on 

as many as three different polarizability components as

described by the matrix:

If a molecule has a center of symmetry (e.g. CCl4) then 

The polarizability is a scalar (i.e. the induced dipole moment

Is always in the direction of the applied field).  However, for

non-centrosymmetric molecules components can be induced

in other directions.  The directions are often determined by

the directions of chemical bonds, which may not be aligned

with the field.  This is the significance of the tensor. 
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Dielectric Polarization

We divide matter into two categories: conductors and 

insulators.  Free charges in a conductor will respond to 

exactly cancel an applied field.  The charges in an insulator 

will respond to an applied field in such a way as to partially 

cancel an applied electric field.  The situation in an insulator 

is more complicated, however, since a molecule in the 

insulator will also experience a field due to the response of the 

insulator.  There is a reaction field due to the response of the 

medium to charges on the molecule and there is a local field 

due to polarization of the solvent in the applied field.    These 

issues are important for relating the molecular polarizability to 

the bulk polarization.   Here we shall demonstrate the role of 

the dielectric constant (also called the relative permittivity) as 

a factor that relates the polarization of an insulator to an 

applied electric field.



The Electric Field in a Capacitor

The experimental geometry that is most convenient for the 

purpose of demonstrating the dielectric constant is the 

parallel plate capacitor.  We compare a capacitor with 

vacuum between the charged plates to one with a dielectric.  

In the case of vacuum the field is:

Notice that the way the field is defined, it is independent of

what is placed in the capacitor.  Field calculations are simple.

Just use the voltage and divide by the separation distance.

Common units of field are V/cm or V/m. 



Illustration of the parallel plate capacitor

The surface charge density is s = q/A.  

The vacuum permittivity is e0.  

The potential is  and the distance between the plates is d.  

The unit vector z is normal to the capacitor plates.  

These features are illustrated below.

z

A = area

d

grounded plate
charged plate



Definition of the Dielectric Constant

If we now place a dielectric medium between the plates at 

constant voltage we have:

Note that the field is unchanged.  It is still the voltage divided 

by the distance.  However, the surface charge density 

required to attain this field is different (s' instead of s) 

because the medium has a permittivity e. Note that since the 

surface charge density increases when the dielectric is 

present the capacitance also increases.  

The relationship between the dielectric constant and the 

permittivity of vacuum is e = ere0. The relative permittivity er

is commonly called the dielectric constant.   The dielectric 

constant is greater than 1 and can be as large 111.0 for 

formamide (see Table 3.1 in Mol. Spectroscopy by McHale). 



Dielectric Polarization

The larger the dipole moment the greater the tendency of the 

solvent to respond to an applied field by reorientation of the 

microscopic dipoles.  However, inspection of Table 3.1 shows 

that there are exceptions and that liquid structure and collective 

dynamics also play a role. 

To see the connection between the dielectric constant and the 

polarization we perform an experiment.  We charge up the 

capacitor in vacuum.  The field is E0 = s/e0.  Then we add an 

insulating medium with dielectric constant er leaving the charges 

constant.  Now the field is E = s/e = s/ere0.  The field is reduced 

in this case because the amount of charge is kept constant.  

The difference between E and E0 is due to the polarization of 

the medium, P.



Dielectric Polarization

We call E the macroscopic field.  The relationship between

E and E0 is:

Solving for the polarization we find:

Thus, the polarization is proportional to macrosopic field:

where ce is the electric susceptibility.

One main goal of studies of dielectric polarization is to 

relate macroscopic properties such as the dielectric constant 

to microscopic properties such as the polarizability.  
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Non-polar gas phase molecules

The relationship between polarizability and susceptibility is

simple for non-polar molecules in the gas phase where 

intermolecular interactions can be ignored.  The polarization 

can be immediately expressed in terms of both electric 

susceptibility (macroscopic) and polarizability (microscopic).

We can see that 

and since er = 1 + ce

Furthermore since er = n2 we have



Non-polar molecules in condensed phase
Interactions between non-polar molecules cannot be neglected 

in condensed phases.  The treatment considers a local field F

inside the dielectric and its relation to an applied field E.  The 

Lorentz local field considers a spherical region inside a 

dielectric that is large compared to the size of a molecule.  The 

field inside this uniformly polarized sphere behaves as if it were 

due to a dipole given by: 

Since P is the polarization per unit volume and 4pa3/3 is the 

volume of the sphere we see that m is the induced dipole moment

or polarization (these are equivalent).  The local field is the 

macroscopic field E minus the contribution of the due to the 

matter in the sphere:



Lorentz local field

Since

the Lorentz local field is

Since er = 1 for vacuum and er > 1 for all dielectric media it is 

apparent that the local field is always larger than the applied 

field.  This simple consequence of the theory of dielectric 

polarization causes confusion.  We usually think of the dielectric 

constant as providing a screening of the applied field.  Therefore, 

we might be inclined to think of a local field as smaller than the 

applied field.  However, this naïve view ignores the role of the 

polarization of the dielectric itself.  Inside the sphere we have 

carved out of the dielectric we observe the macroscopic 

(applied) field plus the field due to the polarization of the 

medium.  The sum of these two contributions leads to a field 

that is always larger than the applied electric field.



The Clausius-Mosotti Equation

The polarization is the number density times the polarizability

times the local field.

We have already seen that

We eliminate E to obtain the Clausius-Mossotti equation.

This equation connects the macroscopic dielectric constant er

to the microscopic polarizability.  Since er = n2 we can replace 

these to obtain the Lorentz-Lorentz equation:



Lorentz-Lorentz Equation

Again here the equation connects the index of refraction 

(macroscopic property) to the polarizability (microscopic 

property).  The number density N/V can be replaced by the 

bulk density  (gm/cm3) through

where NA is Avagadro's number and M is the molar mass.

Thus, the Lorentz-Lorentz equation that connects the index of

refraction with the polarizability is: 



Polar molecules

The polarization we have discussed up to now is the 

electronic polarization.  If a collection of non-polar molecules 

is subjected to an applied electric field the polarization is 

induced only in their electron distribution.  However, if 

molecules in the collection possess a permanent ground 

state dipole moment, these molecules will tend to reorient 

in the applied field.  The alignment of the dipoles will be 

disrupted by thermal motion that tends to randomize the 

orientation of the dipoles.  The nuclear polarization will 

then be an equilibrium (or ensemble) average of dipoles 

aligned in the field.



Equilibrium averaged dipole moment

The angle brackets indicate the equilibrium average.  If the 

permanent dipole moment is m0, then the interaction with the 

field is W = - m0×F = - m0Fcosq where q is the angle between 

the dipole and the field direction.  Thus, the average dipole 

moment is

The average indicated is an average over a Boltzmann 

distribution.



Equilibrium averaged dipole moment

Substituting in for the interaction energy W we find

We make the substitutions

The integral is 

<cos q> =

cos qexp
m0F cos q

kT
sin qdq

0

p

exp –
m0F cos q

kT
sin qdq

0

p

u =
m0F

kT
, x = cos q



The Langevin Function

And the integral becomes:

The function coth(u) - 1/u is known as the Langevin function.  

It approaches u/3 for u << 1 and 1 when u is large.  The limit 

for large u is easy to see.  The limit for small u requires 

carrying out a Taylor's series expansion of the function to 

many higher order terms.

cos q =

x ex ux dx
– 1

1

exp ux dx
– 1

1
=

eu(u – 1)

u2
+

e–u(u + 1)

u2
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u – e–u

u

=
eu + e–u –

eu – e–u

u
eu – e–u = coth (u) – 1

u



The Langevin Function
For typical fields employed m0F/kT << 1.  You can convince 

yourself of this using the following handy conversion factors

m0F = 1.68 x 10-5 cm-1/(DV/cm)

k = 0.697 cm-1/K

For example, at 300 K, thermal energy is 209 cm-1.  For 

liquid water (m0  2.4 D) in a 10,000 V/cm field we have 

W = 0.4 cm-1.  Here u = m0F/kT is of the order of 1/1000.

Thus, we can express the orientational polarization as

The total polarization is the sum of the electronic and 

orientational polarization terms

P0 =
Nm0 cos q

V
=

Nm0
2

3VkT
F



The Debye Equation

Following the same protocol used above to derive the 

Clausius-Mossotti equation, we obtain the Debye equation 

for the molar polarization

This equation works reasonable well for some organics, 

however, it fails for water.  The reason for the failure of the 

Debye model is that the Lorentz local field correction begins 

with a cavity large compared to molecular dimension and thus 

ignores local interactions of solvent dipoles.



The Local Field Problem

The local field problem is one of the most vexing problems of 

condensed phase electrostatics.  Following Lorentz there are 

two models, the Onsager model and the Kirkwood model that 

attempt to account for the local interactions of solvent 

molecules in an applied electric field.  The approaches 

discussed here are all continuum approaches in that there is 

a cavity and outside that cavity the medium is treated as a 

continuum dielectric with dielectric constant er.  The models 

differ in how they define the cavity.  As stated above, Lorentz 

model assumes a large cavity (a is much larger than the 

molecule size).  The Onsager model focuses on the creation 

of a cavity around a single molecule of interest (a is equal to 

the molecule size).  The Kirkwood model includes a cluster 

around the molecule to account for local structure.



The Onsager Model
The Debye model assumes that the dipole m0 is not affected 

by the solvation shell.  Yet consider water which has a gas 

phase dipole moment of 1.86 D and in condensed phase has 

a dipole moment in the range 2.3 - 2.4 D.  The neighboring 

water molecules have a large effect inducing a dipole moment 

more than 25% larger than the gas phase dipole moment.  

The dipole moment m is the sum of the permanent and induced 

parts

The local field F has two contributions, the cavity field G and 

the reaction field R.

The cavity field is given the spherical cavity approximation 

in terms of the applied field

m = m0 + F

F = G +R

G =
3e r

2e r + 1
E



The Onsager Model

Notice that the cavity field is always greater than one.  This 

is exactly analogous to the Lorentz local field.  However, the 

Lorentz local field increases without bound as er increases.  

The Onsager cavity field increases from 1 to 1.5 as er

approaches .  The reaction field is proportional to the dipole 

moment of the molecule in the cavity:

The reaction field is always parallel to the permanent dipole 

moment.  Only the cavity field can exert a torque on the 

dipole and cause it to align in the applied field.  By separating 

these two effects the Onsager model improves upon the 

Debye equation..

R =
e r – 1

2e r + 1
m

2pa3e0

 gm



The Onsager Model

The Onsager reaction field is also an important relation for 

understanding the effect of solvents on the absorption and 

emission spectra of polar and polarizable molecules.  

Solvatochromism is the measurement of the effect of the 

solvent on the maximum position of the absorption band.  

Relaxation dynamics are also measured by determining the 

change in fluorescence maximum in fluorescent dyes in order 

to obtain an estimate of the reorientational dynamics of 

solvents.



Frequency dependent dielectric function
Viewed from a microscopic perspective we know that the 

molecular polarizability is frequency dependent.  Electronic 

polarizability is present in all molecules and has a response 

time that is rapid (> 1014 s-1).  The high frequency response 

can follow the undulations of electromagnetic radiation in the 

visible region and hence this response gives rise to refraction 

of light.  This contribution is the high frequency or optical 

dielectric constant, e.  There is a nuclear polarizability in 

polar molecules due to their tendency to align in an applied 

electric field due to the torque of the applied field in the 

frequency range from 106 to 1010 s-1.  These motions give 

rise to absorption and dispersion in the microwave region.  

They also contribute to the low frequency or static dielectric 

constant, er.  The static dielectric constant is not really static, 

but rather is due to changes in the electrical response due to 

dipolar reorientation.  



Complex dielectric function

We shall dissect the relative permittivity, er into real and 

imaginary parts:

These two contributions represent the in-phase (er') and 

out-of-phase (er'') components of the frequency response of 

the medium.  The in-phase component results in dispersion.  

Physically this means refraction of the electromagnetic 

radiation as it passes through the medium.  The out-of-phase 

component gives rise to absorption.  Absorption occurs in the 

visible (electronic state transitions), infrared (vibrational 

transitions), and microwave (rotational transitions).  The real 

and imaginary parts of the frequency dependence dielectric 

response are related to one another by Kramers-Kronig 

relations.

e r  = e r
  + ie r

 



Kramers-Kronig Relations

The importance of these equations for spectroscopy is that 

we can obtain information on absorptive processes by 

measuring dispersion.  For example, diffuse reflectance 

spectra from crystals can be transformed into absorption 

spectra.  

The refractive index can also be represented as a complex 

quantity.

e r
  = e + 2

p
e r

 s s ds

s2 – 2

0



e r
  = –2

p
e r

– e

s2 – 2
ds

0



N  = nr  + i 



Relationship to index of refraction

The high frequency part of the dielectric response is equal 

to the square of the index of refraction, er() = N()2.  Equating 

real and imaginary parts leads to

The real part of the index of refraction, n r() is the factor by 

which the speed of light is reduced as it traverses a medium.  

The imaginary part of the index of refraction, () is an 

absorption coefficient.  To understand the effects of these 

two terms, consider an electric field 

e r
  = nr

2  – 2 

e r
  = 2nr   

E = Re E0exp i kx ± t



Absorption

The wavevector in vacuum is

and in a dielectric medium it is

Considering both the real and imaginary parts of the index of 

refraction we have

The exponentially decaying term represents the attenuation 

of radiation as it passes through an absorptive medium.  Since 

the intensity is proportional to the square of the amplitude of 

the electric field

k = 2p


E = Re E0exp i
2pnrx


± t exp – 2px



k = 2pN




The absorption coefficient

The absorption coefficient g is

The absorption coefficient can be related to the molar 

absorptivity  (units of L mol-1 cm-1) by comparing Beer's law 

to the above expression

The exponential can be converted to base e:

In the above expression x is the pathlength and C is the 

concentration.  Using these relations we can establish the 

connection between the imaginary part of the dielectric 

constant and the molar absorptivity.



Relationship to extinction coefficient

The imaginary part of the dielectric function is related to

The extinction coefficient as follows:

where N/V is the number of absorbing molecules per cm3.  

This can also be expressed as the number of moles per L.

Which can be solved for a definition of the extinction coefficient:



Solvatochromism and

Electrochromism by DFT
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Xanthine Pyridinium Betaines

A new class of solvatochromic molecules

XPBM
XPBRM



Solvatochromism: solvent effect

on absorption spectrum

XPBs, a new class of solvatochromic molecules.
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Origin of Solvatochromism

Classic solvatochromic molecule: Reichardt’s dye

Basis for the ET(30) solvent polarity scale

TD-DFT calculation shows

that this is the intense transition.

Energy is 11,871 cm-1.



Calculated transitions for XPBM



DFT calculation of solvatochromism

Use COSMO continuum dielectric model to obtain

absorption spectra as a function of e.  This is a model

for solvatochromism.



Electrochromism: the shift of the absorption

spectrum in an applied electric field

+ + + + + + + + + + + + + + + + + + + + + + 

- - - - - - - - - - - - - - - - - - - - - - -



Calculated electrochromism using DFT:

Obtain the shift in wavenumber 

in an applied field

Transition e = 1 e = 5 e = 10 e = 15 e = 20 e = 30
59      60 605.5 1215.1 1333.7 1373.4 1393.2 1413.0

59      61 726.1 1411.0 1542.3 1588.0 1610.9 1633.7

56      60 703.1 1342.3 1469.5 1509.5 1529.5 1549.4

54      60 759.2 1322.2 1390.1 1416.8 1429.2 1440.5

59      62 153.2 119.3 69.1 60.8 56.1 51.7

53      60 211.9 595.6 219.3 194.8 197.3 200.8

59      63 46.9 126.5 179.4 445.1 209.2 276.1



Calculated electrochromism using DFT:

Convert the shift into a difference dipole 

moment using U = -Dm.F

Transition e = 1 e = 5 e = 10 e = 15 e = 20 e = 30
59      60 3.5 7.0 7.6 7.9 8.0 8.1

59      61 4.2 8.1 8.8 9.1 9.2 9.4

56      60 4.0 7.7 8.4 8.7 8.8 8.9

54      60 4.4 7.6 8.0 8.1 8.2 8.3

59      62 0.89 0.68 0.40 0.35 0.32 0.30

53      60 1.2 3.4 1.3 1.1 1.1 1.2

59      63 0.27 0.73 1.0 2.5 1.2 1.6



Which transitions correspond to experiment?

Must use

TD-DFT



Electroabsorption
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Band broadening due to difference dipole moment DmA

Band shift due to difference dipole moment D


