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The effective potential: result of 

the solution of the angular part

• The solutions for the angular part results in a 

term in potential energy equal to:

• This term contains the contributions to the  

energy from angular terms.  

• Together with the Coulomb potential the 

effective potential energy is:



The radial equation for hydrogen

Making the above approximations we have an

radial hamiltonian (energy operator)

The solutions have the form: Rn,l = Nn,l r
l e-r/2 Ln,l(r)

where r = 2Zr/na0 and a0 = 4pe0h
2/me2

Nn,l is the normalization constant.

Ln,l(r) is an associated Laguerre polynomial.



The Bohr Radius

The constant a0 helps to express the radial equations in a

compact form. This constant is known as the Bohr radius.

The Bohr radius is equivalent to 0.52977   . It is named after

Niels Bohr because of his contribution in creating the planetary

model of the hydrogen atom (semi-classical theory). While this

theory does obtain the correct energies for the hydrogen atom

it fails to fully explain angular momentum and it does not explain

multi-electron atoms.



Solutions of the radial equation

The normalization constant depends on n and

The associated Laguerre polynomials are:



Normalization of the radial 

functions
Each of the radial equation solutions is a polynomial

multiplying an exponential.  The normalization is

obtained from the integral:

Rn

*
Rn r 2dr = 1

0



The volume element here is r2dr which is the “r”

part of the spherical coordinate volume element

r2sinqdrdqdf.



MAPLE worksheet

Normalization of the radial functions

A MAPLE worksheet attached to this lecture illustrates

the normalization of the first three radial functions.  The

worksheet includes plots of the functions.

When examining a plot keep in mind that you can plot

the wave function or the square of the wave function.

We often plot the square of the wave function, because

the integral of the square of the wave function gives the

probability.



Hydrogen 1 s radial 

wavefunction

• The 1s orbital has no 

nodes and decays 

exponentially.

• R1s = 2(1/a0)
3/2e-r/2

• For n = 1, r = r/a0

• n = 1 and = 0 are 

the quantum numbers 

for this orbital. 
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The Radial Distribution in 

Hydrogen 2s and 2p orbitals
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Radial wave functions for H



The Quantized Energy Levels

• The energy levels calculated using the 

Schrödinger equation are given by

• In units of Bohrs the Rydberg constant is



The Rydberg Constant

• The energy levels calculated using the 

Schrödinger equation permit calculation of the 

Rydberg constant.

• One major issue is units. Spectroscopists often 

use units of wavenumber or cm-1.  At first this 

seems odd, but hn = hc/l = hcn where n is the 

value of the transition in wavenumbers.

~
~

in cm-1



The simple form for 

H energy levels
Using the Rydberg constant the energy of the 

hydrogen atom can be written as:

where R = 109,690 cm-1 
.

In units of eV R = 13.6 eV.



Shells and subshells

• All of the orbitals of a given value of n for a shell.

• n = 1, 2, 3, 4 .. correspond to shells K, L, M, N…

• Orbitals with the same value of n and different 

values of    form subshells.

• = 0, 1, 2, ... correspond to subshells s, p, d …

• Using the quantum numbers that emerge from 

solution of the Schrödinger equation the 

subshells can be described as orbitals.



Spectroscopy of atomic hydrogen

• Spectra reported in wavenumbers, cm-1

• Rydberg fit all of the series of hydrogen spectra 

with a single equation, 

• Absorption or emission of a photon of frequency

n occurs in resonance with an energy change, 

DE = hn (Bohr frequency condition).

• Solutions of Schrödinger equation result in 

further selection rules.

n = R 1
n1

2 –
1

n2
2



Spectroscopic transitions

• A transition requires a transfer from one state 

with its quantum numbers (n1, 1, m1) to another 

state (n2, 2, m2).

• Not all transitions are possible: there are 

selection rules, D =  1, m = 0,  1

• These rules demand conservation of angular 

momentum.  Since a photon carries an intrinsic 

angular momentum of 1.



Expectation values

< r > = 
*
rd

0



The expectation (or average) value of an observable <r> 

is given by the general formula.

As written the above integral describes the expectation 

value of the mean value of the radius, r.  Integration over 

the angular part gives 1 because the spherical harmonics 

are normalized. The volume element can be written 

d = r2dr.  The mean value is:

< r > = 
*
r r2dr = 

*
 r3dr

0



0





Assuming Z = 1 and units of Bohrs (a0 = 1) , the radial 

normalized 1s wave function is:

The expectation value or average radius of the electron is given 

by

Substituting in the 1s wave function we find

Example: Average H Radius



The integral can be solved to yield

which gives the average distance in units of Bohrs

Thus, the average distance of an electron from the nucleus 

is 3/2a0 or 0.795 Angstroms.

.

Example: Average H Radius



MAPLE worksheet on

Expectation (Average) values

There is a MAPLE worksheet attached to this lecture 

that illustrates the use of expectation values.  The 

example of the position <r> is given for the 1s, 2s and 

3s radial wave functions.  The expectation value or 

average value of r gives the average distance of an

electron from the nucleus in a particular orbital.  Since

the 2s orbital has one radial node and the 3s orbital has

two radial nodes the average distance of the electron

from the nucleus is shown to increase as:

<r> for 3s  >  <r> for 2s  >  <r> for 1s



The average energy

< E > = 
*
Hd

0



The expectation (or average) value of the energy <E> is 

given by the general formula.

since the hamiltonian H is the energy operator.  If the 

wave function is not normalized this is often written as:

< E > =


*
H d

0




*
 d

0





A second way to view the hydrogen atom can be 

expressed by the question, "how big is the hydrogen atom?".  

We can define the size of the atom in terms of an isosurface.  

The isosurface is defined for a given probability.  For 

example, we can calculate how large a sphere corresponds 

to a 90% probability for finding the electron.  This 90% 

isosurface defines the radius of the atom. Assuming Z = 1 

and units of Bohrs (a0 = 1) the normalized radial 1s wave 

function is

The density contained within a 90% probability surface will 

have a radius A given by

The definition of an isosurface



Substituting in the 1s wave function we find

This integral is readily solved to give the equation,

While this equation does not have analytic solution, it can 

readily be solved numerically to yield 

A = 2.66. Thus, the 90% isosurface is defined as total 

density within 2.66 Bohrs of the nucleus.

The 90% isosurface of the H atom



Spin and the Pauli 

Exclusion Principle

The solutions to the Schrodinger equation explain the one

Electron atom adequately. However, in order to move beyond

a one electron atom we must introduce the concept of 

electron spin. The word spin arises from the fact that an

electron has an apparent magnetic moment.  It acts like a 

spinning charge.  Because of the property of spin electrons

populate the orbitals in pairs. 

The rigorous statement of this idea is that the total wave 

function must be anti-symmetric with respect to electron

exchange. Electrons are a member of the class of particles 

known as fermions.  The have a half integer spin (s = ½).

No two fermions may occupy the same energy state. 



We focus on He and the two-electron situation since that is 

both the first and simplest case where electron spin must be 

included. The wave function for the two electrons can be 

written as,

We have already considered how the spatial wave function 

can arise from a product of hydrogen-like wave functions for 

each electron (Hartree approximation). The spin part of the 

wave function consists of single electron wave functions that 

we will can a and b, for spin-up and spin-down, respectively. 

The wave function must be antisymmetric with respect to 

electron exchange. Since there are two parts to the wave 

function, the antisymmetry can arise either from the spin part 

or the spatial part. 

Spin and Spatial Wavefunctions



There are 4 possible spin states for a two-electron system.  

These are:

However, only the first two are symmetric or anti-symmetric to 

electron exchange (which corresponds to exchanging 1 and 2). 

The last two need to be rewritten as:

The first three are symmetric, whereas the last one is anti-

symmetric. 

Symmetric and anti-symmetric

wavefunctions



For anti-symmetric spatial wave function, we see that there 

are three symmetric spin wave functions.

Say one of the electrons in the helium atom is excited to the 

2s state. In this case, its spatial wavefunction will have to be 

either anti-symmetric (requiring a symmetric spin 

wavefunction):

Or symmetric (requiring an anti-symmetric spin wavefunction):

The triplet state



This set of wave functions corresponds to a triplet state, i.e. it 

has a spin multiplicity of 3. The triplet state is not allowed in 

the ground state. In the ground state, the spatial function can 

only be symmetric and therefore the spin function must be 

anti-symmetric. However, in this excited state the anti-

symmetric spin state, 

is the singlet state. In the limit that 

the probability amplitude tends to zero. This means that the 

electrons are unlikely to be close to each other

Electrons avoid eachother



Beyond Hydrogen: The 

Aufbau Principle

In a conceptual way we can imagine using the H atom as 

model for all atoms. We can populate the hydrogenic orbitals

with electrons to create the atoms of the periodic table.

This is not formally correct since we must confront the fact of

electron-electron repulsion.  However, we can speak of orbital

occupancy in this approximation by building up the atoms.

The German word “aufbau” means building up and it refers to

this treatment.  Thus, we can imagine helium having two 

Electrons in the 1s orbital or a configuration of 1s2. Then

We have

Li: 1s22s    Be: 1s22s2     B: 1s22s22p   C: 1s22s22p2

And so on.



1 electron 2 electrons 3 electrons

4 electrons 5 electrons 6 electrons

Hund’s rule
As we populate the p orbitals we must account for the 

spin pairing energy.  The spin pairing energy is minimized

by keeping the unpaired electrons at a maximum as shown

below: 

Hund’s rule states that the most stable configuration will be 

the one with the greatest spin multiplicity.



The orbital degeneracy is 

The spin multiplicity is defined as 2s + 1. 

For N electrons the total value of the angular momentum will be 

the sum of the individual electronic momenta. The total orbital 

angular momentum is:

and the total spin momentum is:

Spin and orbital angular 

momenta for atoms



The angular momenta result from the configurations 

possible for the atom. There are actually many configurations 

possible so it is convenient to summarize the information in a 

term symbol, which describes the orbital,spin and total angular 

momentum state of the atom.  Term symbols have the form:

Term Symbols



Summary

The hydrogen atom is the only atom with an exact solution.

Hydrogen wave functions are used as the approximation

for atomic wave functions in multielectron atoms.


