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The Born-Oppenheimer approximation permits the 
separation of electronic and nuclear coordinates. The reason 
for the separation is the very different time scales for motion 
of the nuclei and the electrodes. In practice, this means that 
we calculate the electronic structure of a molecule at a fixed 
nuclear position. The initial configuration is not necessarily 
the optimum, i.e. lowest energy geometry. Thus, it is 
important to find the minimum energy structure. At the 
nuclear position of the minimum energy structure the 
potential energy surface has positive curvature for all of the 
3N-6 vibrational modes. Thus, a vibrational frequency 
calculation is meaningful at this point in nuclear coordinate 
space since it gives the normal modes of vibration. 



In general, the nuclear position is adjusted and energies are 
calculated. However, the program also uses search criteria to 
systematically move towards lower energy and ultimately to 
find the minimum.  Geometry optimization has three general 
stages, 
1. Steepest Descent
2. Conjugate Gradient 
3. Newton-Raphson

These are considered in an illustrative example in the following 
sections. 

Overview of a geometry optimization



Figure. Representation of a potential energy surface. The 

minimum in this case is (0.0).  

The contours represent various energies from red (lowest 

energy, E = 2) to blue (highest energy, E = 20).

The potential energy surface



The first derivative is

The line used for a search is

Steepest Descent method

For this example, a two-dimensional harmonic potential 

energy surface can be represented by E(x,y) = x2 + 5y2 as 

shown in the Figure.



If we choose x0 = 3.22, y0 = 1.39 as the starting point 

(structure) represented by the black dot on the figure, the 

black line shown in Figure represents the direction for a line 

search.  

Illustration of the line search in the steepest descent method. 

Steepest Descent method



The line search conducted along the black line finds a 

second point (the red dot) also at E = 20 and perhaps 

intermediate points with lower energies demonstrating that 

there will be a minimum between the black and red dots.  This 

turns out to be the blue dot.  After the first iteration the blue dot 

is the starting point (structure) for a second iteration.  The 

gradient now follows the blue line and this intersects the 

minimum at (0,0).

This example is trivial, however, it illustrates the 

principle of energy minimization by steepest descent.  The fact 

that the minimum was found so quickly is attributable to the 

choice of a harmonic (quadratic) potential energy surface.

The line search



We demonstrate conjugate gradient with the above 

example (even though it is not needed for the harmonic surface 

shown).  In conjugate gradients, the new direction vector, hi+1

leading from point i+1 is computed by adding a term to the 

gradient, gi+1 used be steepest descent.  The addition term is a 

constant, g times the old direction hi.

hi+1 = gi+1 + ghi

where g is a scalar defined by

Conjugate Gradient



The new direction vector is

No matter what the initial point is, g times the old direction 

always provides a correction to the gradient the produces a 

direction conjugate to all previous directions.  A line search is 

still required as in steepest descent.

Since gi and gi+1 are the gradients (first derivatives) calculated 

at points i and i + 1, in the above example this would have the 

form

Conjugate Gradient



The Newton-Raphson method uses the gradient (first 

derivative) to establish a direction and curvature (second 

derivative) to predict where along the fradient the function will 

change directions (pass through a minimum).  Since the 

second derivative matrix defines the curvature in each 

gradient direction, the invers of the second-derivative matrix 

can be multiplied by the gradient to obtain a vector that 

translates directly to the nearest minimum.

rmin = r0 - H-1 ÑE(r0)

To illustrate how this works, we return to the elliptical PES 

used above.  We have already seen that the first derivatives 

are

Newton-Raphson method



The inverse Hessian matrix is easy in this case

The second derivative of Hessian matrix is

Or numerically in this instance

Using the Hessian matrix



Thus we have

which simplifies to 

Thus, we arrive at the minimum in one step. Since the 

Newton-Raphson method depends on second derivatives it 

works well only near the minimum. It is used as the last step 

in a multi-stage refinement process to locate the minimum 

energy point. It has the advantage of great efficiency in terms 

of the number of steps. The example shows that in the limit 

that the potential energy surface is quadratic in form, Newton-

Raphson can find the minimum in a single step. 

Newton-Raphson method


