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Density Functional Theory (DFT) provides an 

alternative to Hartree-Fock and post-Hartree-Fock theory. 

As the name implies, the central feature of the theory is the 

use of the electron density, rather than molecular orbitals, 

as the important quantity to be computed. The use of a 

theory based on the electron density is appealing because 

of the connection with experiment. For example, electron 

diffraction can be used to measure the shape elctron

density. The density is related to the number of electrons.  

Here, we have used a representation of the 3-
dimensional volume element as d3r  because we will consider 
the individual integrals over each of the electrons in the 
following. This is equivalent to the dt, which is the volume 
element used previously in this text. 



DFT methods are based on the Born-Oppenheimer 

approximation. The nuclei are treated a fixed set of charges, 

which comprises an external potential, Vext. A stationary 

electron state can be described by a wave function

, which satisfies the Schrodinger equation.

where, for the N-electron system, 

is the Hamiltonian, E is the total energy, 

is the kinetic energy,

is the external potential due to the positively charged nuclei

is the electron-electron interaction energy. 



DFT provides an alternative method to post-

Hartree-Fock that can include both exchange and 

correlation in a single method. DFT does this by mapping 

the many-body problem that includes  electron repulsion, 

onto a single-body problem that lacks the complexity of

electron exchange integrals.

The key variable is the electron density         , which is given by: 

This relation can be reversed. Instead of calculating the density 
from the square of the wave function, it is possible to calculate 
the ground state wave function,                                            
from the density,    .

. 

From 3N variables to 3 variables



Stated another way, Y0 is a unique functional of r0.

Therefore, the ground-state expectation value of an observable 

O is also a functional of r0.

In particular, the ground-state energy is a functional of r0.

where the contribution of the external potential 

can be written explicitly in terms of the ground-state density r0.

DFT assumes the uniqueness of the electron 
density for a given nuclear conformation



The variational theorem applies to DFT methods. The energy 

functional E[r] can be solved by application of the 

Lagrangian method of undetermined multipliers. Initially, one 

can consider an energy functional that lacks an electron-

electron interaction energy term,

One can solve the so-called Kohn–Sham equations of this 

auxiliary non-interacting system,

which yields the orbitals that reproduce the density of the 
original many-body system. 

DFT uses the variational principle



Just as one can calculate the electron density from the 

molecular orbitals in HF theory, one can define Kohn-Sham 

orbitals that comprise the density in DFT. These have the 

property that

The effective single-particle potential can be written in more 

detail as

where the second term denotes the so-called Hartree term 
describing the electron-electron Coulomb repulsion, while 
the last term  Vxc is called the exchange-correlation 
potential.

DFT uses orbitals to define the density



The Kohn-Sham approach is to turn on the 

interactions using a parameter 𝜆, which can vary from 0 

to 1. When 𝜆 =0 the system consists of non-interacting 

electrons. On the other hand, when 𝜆 = 1 the system is 

the real system with the full set of interactions, including 

exchange and correlation. The Kohn-Sham scheme is 

summarized in the equation:

𝐹𝜆 𝜌 = Ψ𝜌
𝑚𝑖𝑛,𝜆| 𝑇 + λU|Ψ𝜌

𝑚𝑖𝑛,𝜆

where Ψ𝜌
𝑚𝑖𝑛,𝜆

is the wave function that minimizes the 

value of the 𝐹𝜆 𝜌 . 

The Kohn-Sham method for connecting
the real and virtual systems



Now, the assumption is that for any real system with density 

𝜌(𝑟), the non-interacting system has the same ground state 

density. Thus,

𝐹 𝜌 = 𝑇𝑠 𝜌 + 𝑉𝑐𝑜𝑢𝑙 𝜌 + 𝐸𝑥𝑐 𝜌

Application of the variational principle in this case means 

taking the derivative

𝛿𝐸

𝛿𝜌(𝑟)
= 0

This results in the equation

𝐸 𝜌 = න𝑣 𝑟 𝜌 r d3r + 𝑇𝑠 𝜌 + 𝑉𝑐𝑜𝑢𝑙 𝜌 + 𝐸𝑥𝑐 𝜌

The Kohn-Sham energy partitioning



Using these expressions we can express the Kohn-Sham 

equations as:

−
1

2
𝛻2 + 𝑣 𝑟 +න

𝜌 r′

𝑟 − 𝑟′
d3r′ + 𝑣𝑥𝑐 𝑟 ϕi r = εiϕi r

It is evident that the exchange-correlation potential,𝑣𝑥𝑐 𝑟 is 

the crucial term. The essence of DFT is the search for an 

appropriate form for the exchange-correlation functional that 

will provide as close as possible to an exact solution. But, the 

great weakness of the theory is that there is no road map for 

how to find such a functional.

The Kohn-Sham equations



Vxc includes all the many-particle interactions. Since the 

Hartree term and Vxc depend on r(r), which depends on the 

fi(r), which in turn depend on Vs, the problem of solving the 

Kohn–Sham equation resembles the self-consistent field 

method seen HF. Usually one starts with an initial guess for 

r(r) then calculates the corresponding Vs, and solves the 

Kohn-Sham equations for the fi(r).

From these one calculates a new density and starts again. 

This procedure is then repeated until convergence is reached. 

DFT uses a SCF Approach



Adiabatic integration

The major obstacle to implementation of DFT is that the 

exact functionals for exchange and correlation are not 

known except for the free electron gas. However, 

approximations exist which permit the calculation of certain 

physical quantities quite accurately.  We can begin with 

application of Feynman-Hellman theorem to the system:

𝛿𝐹𝜆 𝜌

𝛿𝜆
= Ψ𝜌

𝑚𝑖𝑛,𝜆|U|Ψ𝜌
𝑚𝑖𝑛,𝜆

We can integrate this expression from 𝜆 = 0 to 𝜆 = 1. This 

is known as adiabatic integration. 



Adiabatic integration as a tool
The adiabatic integral represents a method to connect the 

ideal non-interacting particles assumed by Hohenberg and 

Kohn with real particles.

න
0

1 𝛿𝐹𝜆 𝜌

𝛿𝜆
𝑑𝜆 = 𝐹1 𝜌 − 𝐹0 𝜌 = 𝑉𝑐𝑜𝑢𝑙 𝜌 + 𝐸𝑥𝑐 𝜌

We can use adiabatic integration to obtain a general 

prescription for the calculation of the exchange-correlation 

energy.

𝐸𝑥𝑐 𝜌 = Ψ𝜌
𝑚𝑖𝑛,𝜆|U|Ψ𝜌

𝑚𝑖𝑛,𝜆 − 𝑉𝑐𝑜𝑢𝑙 𝜌 = න
0

1 𝛿𝐸𝑥𝑐
𝜆 𝜌

𝛿𝜆
𝑑𝜆



Ultimately, this energy depends on the density times a hole 

functional ℎ 𝑥𝑐(Ԧr1, Ԧr2). The essential feature of the hole 

functional is to describe the shape and dynamics of the 

region of repulsion around any electron in the system. After 

all, correlation is really the detailed description of how 

electrons do their dance to avoid each other as they move in 

a pattern dictated by the nuclear charge (i.e. the external 

potential).  

𝐸𝑥𝑐 𝜌 =
1

2
න
0

1

𝑑𝜆නන
ρ(Ԧr1)ℎ

𝜆
𝑥𝑐(Ԧr1, Ԧr2)

Ԧr1 − Ԧr2
d3Ԧr1d

3Ԧr2

The hole functional can also be treated using adiabatic 

integration.

തℎ𝑥𝑐(Ԧr1, Ԧr2) = න
0

1

ℎ𝜆𝑥𝑐(Ԧr1, Ԧr2)𝑑𝜆



The hole functional can also be treated using adiabatic 

integration.

തℎ𝑥𝑐 Ԧr1, Ԧr2 = න
0

1

ℎ𝜆𝑥𝑐 Ԧr1, Ԧr2 𝑑𝜆

Finally, we end up with a general form of an exchange-

correlation functional. The problem is now to find the 

appropriate hole functional.

𝐸𝑥𝑐 𝜌 =
1

2
නන

ρ(Ԧr1)തℎ𝑥𝑐(Ԧr1, Ԧr2)

Ԧr1 − Ԧr2
d3Ԧr1d

3Ԧr2

This form of the equation provides a starting point for the 

construction of exchange-correlation functionals. The form is 

that of a function that multiplies the density. 

Formal treatment of the hole



The ladder of density functional 
approximations

Local Density
LDA

Gradient Expansion
GEA

Generalized Gradient 
GGA

meta-Generalized Gradient 
meta-GGA

Hybrid exchange



The most widely used approximation is the local density 

approximation (LDA), where the functional depends only on 

the density at the coordinate where the functional is 

evaluated:

Exc
LDA ρ = නϵxc ρ ρ(Ԧr)d3r

In the LDA the energy and other properties at a point in space 

are determined by the value of the density at that point in 

space. 

The Local Density Approximation (LDA)



Perdew and Wang define “the exchange-correlation energy 

EXC as the electrostatic interaction of the electron at r with 

the density ρ𝑥𝑐 𝑟, 𝑟 + 𝑢 = ρ𝑥 + ρ𝑐 at 𝑟 + 𝑢 of the exchange 

correlation hole that surrounds it.” {Perdew, 1996 #1} In 

atomic units they give the functional form as

Exc ρ =
1

2
නρ Ԧr d3rන

ρxc Ԧr + u

𝑢
d3u

This functional provides relatively accurate energies, but 

suffers from relatively poor agreement with molecular 

structures. As a general rule the LDA is valid for slowly 

varying density. However, in molecules the density changes 

are not slowly varying.

Perdew and Wang LDA



The next higher level of theory is the second-order gradient 

expansion approximation (GEA).

Exc
GEA ρ = Exc

LDA ρ +

𝜎,𝜎′

න𝐶𝑥𝑐
𝜎,𝜎′ 𝛻ρ𝜎 ∙ 𝛻ρ𝜎′

ρ𝜎
2/3

ρ𝜎′
2/3

d3r

The GEA is less accurate the LDA despite the fact that it 

includes a term containing the gradient. The GEA is no 

longer a local functional since the second term in Eqn. 

11.2.10 depends on the product of gradients at two different 

locations in space indicated by the indices 𝜎 and 𝜎′. 

Gradient Expansion Approximation (GEA)



The generalized gradient approximation (GGA) is still 

local but also takes into account the gradient of the density 

at the same coordinate:

Exc
GGA ρ = නρ(Ԧr)ϵxc ρ, 𝛻ρ d3r

Good results for molecular geometries and ground-state 

energies have been achieved using the GGA.  Well known 

functionals that include this level of theory include PBE and 

BLYP. The GGA approach provides good agreement with 

molecular structure, but is often criticized for poor 

agreement with thermochemistry.

Generalized Gradient Approximation 
(GGA)



To move beyond the GGA functional one can include the 

second derivative with respect to the density. The second 

derivative is the Laplacian and this is also the function that 

gives the kinetic energy.  The gradient is still include in these 

functionals. We will return to these various rungs of the ladder 

of DFT functionals that increase in complexity. However, first 

we consider the historical starting point for DFT in order to 

understand how simple the initial assumptions were. In 

particular, the notion of a density of a free electron gas used 

in the late 1920s is a remarkable theoretical innovation. It 

seems too simple. And yet, it worked quite well for a number 

of systems.

meta-Generalized Gradient Approximation 
(meta-GGA)



History of DFT

Thomas-Fermi model

Slater Xa

Hohenberg-Kohn 
Theorems

Kohn-Sham 
equations



The earliest approach to DFT can be found in the

Thomas-Fermi model, which was developed independently 

by both Thomas and Fermi in 1927. They used a statistical 

model to approximate the distribution of electrons in an 

atom. The mathematical basis for the theory is based on a 

model, in which electrons are distributed uniformly in phase 

space with two electrons in every h3 of volume. This is the 

so-called free electron gas. For each element of coordinate 

space volume d3r we can fill out a sphere of momentum 

space up to the Fermi momentum 

The Thomas-Fermi Model



The electron density is defined as the number of electrons 

in coordinate space to that in phase space. This is obtained 

by multiplying the momentum space by 2/h3. The electrons 

are spin paired, which gives rise to the factor of 2 and the 

phase space volume element is 1/h3. We can understand 

this definition from the DeBroglie relation, p = h/l, which 

tells us that the previous equation has units of number of 

electrons per unit volume.

The Thomas-Fermi Model



Solving for     and substituting into the classical kinetic 

energy formula then leads directly to a kinetic energy 

represented as a functional of the electron density:

and

The Thomas-Fermi Model



One can calculate the energy of an atom using this kinetic 
energy functional combined with the classical expressions for 
the nuclear-electron and electron-electron interactions (which 
can both also be represented in terms of the electron density).

Although this was an important first step, the Thomas–
Fermi equation's accuracy is limited because the resulting 
kinetic energy functional is only approximate, and because the 
method does not attempt to represent the exchange energy. 
An exchange energy functional was added by Dirac in 1928. 
However, these functionals do not account for electron 
correlation. 

Limitations of Thomas-Fermi Model
Molecular Bonding Requires Correlation



An example is the Weizsacker correction:

This correction is a first step in the direction of a gradient 

approach.

In 1962, Teller showed that the Thomas-Fermi model cannot 
describe molecular bonding. This deficiency can be overcome 
by using an improved kinetic energy function. 

Weizsacker correction



Approximately 20 years later Slater recognized the need 

to derive theory of exchange based on the density for application 

to solids. Simply put, the HF exchange was too complicated for 

a calculation in the solid state.  Slater’s approach begins with 

the consideration of a lattice and a consideration of the distance 

over which exchange is expected to occur. This is defined as:

𝜌𝑉 = 𝜌
3𝜋𝑟0

3

4
= 𝑒

where e is the charge on an electron. This expression gives the 

relation for the limiting radius of interaction

𝑟0 =
4𝑒

3𝜋𝜌

1
3

Slater Exchange Functional



This is the radius of the exchange hole or the Fermi hole. 

Using this definition the exchange potential energy is

𝑣𝑥 = 3
2

𝜋

2
3 𝑒2

4𝜋휀0𝑟0
𝐹 𝜂

Where the function 𝐹 𝜂 is:

𝐹 𝜂 =
1

2
+
1 − 𝜂2

4𝜂
𝑙𝑛

1 − 𝜂

1 + 𝜂

And 𝜂 = 1 in the occupied levels, drops to ½ at the Fermi 

level and goes to zero above the Fermi level. The average 

value of 𝐹 𝜂 is -3/4. Therefore, 

𝑣𝑥 = −
9

4

2

𝜋

2
3 𝑒2

4𝜋휀0𝑟0



Substituting in for 𝑟0 and converting to atomic units (𝑒2/4𝜋휀0= 

1/2) we have the exchange potential in terms of the density:

𝑣𝑥 = −
9

4

2

𝜋

2
3 1

2

3𝜋

4

1
3

𝜌
1
3 = −

3

8

3

𝜋

1
3

𝜌
1
3

Ex ρ = C𝑥නρ r1 𝑣𝑥 r1 d3r1

To improve the quality of this approximation an adjustable, 

semi-empirical parameter a was introduced into the pre-factor 

in the place CX. This approach gave rise to the Xa or Hartree-

Fock-Slater (HFS) method. While this method was used in 

solid state physics it never had much application in chemistry.



The final form of the Slater Xa functional is:

EXα ρ = −
9

8

3

π

1/3

αනρ4/3 r1 d3r1

Typical values of α are between 2/3 and 1. It is important to 

note that the 4/3 power law for the dependence of the 

exchange interaction on the electron density was also 

obtained from a different approach using the concept of the 

uniform electron gas, by Bloch,1929, and Dirac, 1930. 

This approach replaces the non-local and complicated 

exchange term of Hartree-Fock theory by a simple 

approximate expression, which depends only on the local 

value of the electron density. Thus, this expression represents 

a density functional for the exchange energy. This formula 

was originally explicitly derived as an approximation to the HF 

scheme, without any reference to density functional theory. 



Slater’s idea was to assume that the exchange hole is 

spherically symmetric and centered around the reference 

electron at  r1. He further assumed that within the sphere the 

exchange hole density is constant, having minus the value of 

r(r1), while outside it is zero. Since the Fermi hole is known to 

contain exactly one elementary charge, the radius of this sphere 

is then given by

The radius rs is known as the Wigner-Seitz radius. It can 

interpreted as the average distance between two 

electrons in a molecule. 

The Wigner-Seitz Radius



Electron exchange provides a second aspect of 

electron interaction that led to applications in DFT. The 

approach by Slater, 1951, made the electron density the 

central quantity. This approach was originally constructed as 

an approximation to the exchange part of the HF scheme, 

because of the great computational expense. The original 

formulation did not have DFT in mind. If we write HF 

exchange in the form of a functional it has the appearance,

Hence, if we can construct a simple but reasonable 

approximation to the functional requirement that electrons 

avoid each other. This is expressed technically as the Fermi 

hole. 

Slater Exchange Functional



Slater’s idea was to assume that the exchange hole is 

spherically symmetric and centered around the reference 

electron at  r1. He further assumed that within the sphere the 

exchange hole density is constant, having minus the value of 

r(r1), while outside it is zero. Since the Fermi hole is known to 

contain exactly one elementary charge, the radius of this sphere 

is then given by

rS =
3

4πρ

1/3

The radius rs is known as the Wigner-Seitz radius. It can 

interpreted as the average distance between two 

electrons in a molecule. 

The Wigner-Seitz Radius


