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Introduction

Density functional theory is an approach for the description 

of ground state properties of metals, semiconductors, and 

insulators. The success of density functional theory (DFT) 

not only encompasses standard bulk materials but also 

complex materials such as proteins and carbon nanotubes. 

The main idea of DFT is to describe an interacting system 

of fermions via its density and not via its many-body wave 

function. For N electrons in a solid, which obey the Pauli 

principle and repulse each other via the Coulomb potential, 

this means that the basic variable of the system depends 

only on three -- the spatial coordinates x, y, and z –

rather than 3N degrees of freedom. 



Basic Ideas Behind DFT

Knowledge of the density is all that is necessary for a 

complete determination of all ground state molecular

properties.

If one knows the exact electron density, r(r), then the

cusps of this density would occur at the positions of the

nuclei.

A knowledge of |r(r)| at the nuclei would give the effective 

nuclear charge. 

Electron density is an observable.

Orbitals are just a mathematical construction.



Significance

(1). The wave function f of an N-electron system includes 

3N variables, while the density, r no matter how large the 

system is, has only three variables x, y, and z. Moving from 

E[f] to E[r] in computational chemistry significantly 

reduces the computational effort needed to understand 

electronic properties of atoms, molecules, and solids. 

(2). Formulation along this line provides the possibility 

of the linear scaling algorithm currently in fashion, whose 

computational complexity goes like O(NlogN), essentially 

linear in N when N is very large. 

(3). The other advantage of DFT is that it provides some 

chemically important concepts, such as electronegativity 

(chemical potential), hardness (softness), Fukui function, 

response function, etc.. 



Definitions
Function: a prescription which maps one or more numbers

to another number: y = f(x) = x2.

Operator: a prescription which maps a function onto another

function: 

Functional: A functional takes a function as input and gives

a number as output.  An example is:

F[f(x)] = y

Here f(x) is a function and y is a number.  

An example is the functional to integrate x from –to .

F[ f ] = f (x)dx
–
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2

x
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2

x
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The Hohenberg-Kohn Theorems

The first Hohenberg-Kohn theorem asserts that the 

density of any system determines all ground-state

properties of the system, that is, E = E[r], where 

r is the ground-state density of the system. 

The second H-K theorem shows that there 

exists a variational principle for the above energy density 

functional E[r]. Namely, if r' is not the ground state density 

of the above system, then E[r'] > E[r]. 



Consequences of the H-K Theorems

Each local one-particle potential corresponds exactly to 

one ground state density. This permits us to express the 

potential as a function of the density V[r].

EGS  ground state energy

|fGS  non – degenerate ground state N – electron wave function

H|fGS = EGS|fGS

rGS r = fGS r
2


occ

|fGS

rGS

Vext

One-to-one

Ground state expectation values depend uniquely on rGS

rGS Vext H |f[rGS] O[rGS] = f[rGS]|O|f[rGS]

rGS(x,y,z) and not fGS(x1,y1,z1,…xN,yN,zN) is the basic variable



Beyond the Hartree-Fock Hamiltonian

We begin with the Hartree-Fock (HF) hamiltonian, but add a
term that accounts for electron exchange in terms of 
the density.  The HF hamiltonian in atomic units is:

Recall that the major expense in the HF approach is the 

calculation of exchange (and even more so correlation).  

Instead of calculating using explicit exchange DFT uses an

additional function of the density Vxc where the x stands

for exchange and the c stands for correlation.  The central

problem in DFT is that there is no unique prescription for how

to find the exchange and correlation functionals.

H = – 1
2

i

2
i = 1

N

+ Vext,i
i = 1

N

+ 1

r i – r j


i < j

= T + Vext + Vcoul + Vxc

Vext  external, local, electron– nuclear potential



Variational H-K Method

Procedure: Determine EGS and r by means of a constrained 
energy minimization of the energy functional E[r]
N = total number of particles; 
f[r] is the functional of the density

The variational calculation is carried out using the Lagrange
multiplier m as shown below.

E[r] = f[r]|T + Vext + Vcoul + Vxc|f[r]|  EGS

E[r] = EGS

 E[r] – m N – r(r)dr
V

= 0



The Kohn-Sham approach

Treat the electrons as N fictitious non-interacting particles
moving in an effective potential.

|fi  independent particle wavefunction

density: rKS = fi

2


i = 1

N

kinetic energy : TKS = – 1
2

fi|
2
|fi

i = 1

N



The Kohn-Sham assumption is that the K-S density rKS is
equal to the true density.

Kohn-Sham energy partitioning:

E[r] = T[r] + Eext[r] + ECoul[r] + Exc[r]



Energy evaluation in the K-S approach
The energies are calculated by:

The Kohn-Sham equations, variational minimization of E[r]:

Note that wave functions are obtained.  These are called
Kohn-Sham wave functions.  They do have a correspondence
with HF molecular orbitals, but formally they have a different
origin.

ECoul =
r(r)r(r)

r – r
drdr , Coulomb integral (electron repulsion)

Eext = Vext(r)r(r)dr , Vext =
ZAe

2

|r – RA|
, elec – nucl attraction

A

[ – 1
2
2

+ VCoul(r,r) + Vext(r,r) + Vxc(r,r)]fi(r) = ifi(r)

Exc = Vxc(r)r(r)dr , Vxc exchange and correlation potential



Implications of the K-S approach

Local exchange-correlation functional contains all of the 
complexities of the many-electron system,

or

Solve single-particle problem instead of many-electron 
problem. Except for m = N, i are Lagrange parameters 
without  physical meaning. The remaining issue is to find 
the appropriate exchange-correlation functional.

Vxc(r,r) =
Exc[r]

r(r) r = rGS

Exc[r] = drr(r)Vxc(r,r)



The exchange-correlation potential
While DFT in principle gives a good description of ground 

state properties, practical applications of DFT are based 

on approximations for the so-called exchange-correlation 

potential. The exchange-correlation potential describes the 

effects of the Pauli principle and the Coulomb potential 

beyond a pure electrostatic interaction of the electrons. 

Possessing the exact exchange-correlation potential means 

that we solved the many-body problem exactly.

A common approximation is the so-called local density 

approximation (LDA) which locally substitutes the 

exchange-correlation energy density of an inhomogeneous 

system by that of an electron gas evaluated at the local 

density. 



The Local Density Approximation (LDA)

The LDA approximation assumes that the density is slowly 
varying and the inhomogeneous density of a solid or 
molecule can be calculated using the homogeneous electron 
gas functional.

While many ground state properties (lattice constants, 

bulk moduli, etc.) are well described in the LDA, the 

dielectric constant is overestimated by 10-40% in LDA 

compared to experiment. This overestimation stems from 

the neglect of a polarization-dependent exchange correlation 

field in LDA compared to DFT. 

The method can be improved by including the gradient of

the density into the functional.  The generalized gradient 

approximation GGA is an example of this type of approach.



The free electron gas potential
linear density vs. gradient functionals

The LDA approximation begins with the simplest potential.
The free electron gas potential function is:

For a true electron gas a = 2/3. Any potential that is a
function of the density only is called a local density function.

When the gradient of the density.

is included the functional then the functional belongs to 
the class of gradient approximation functionals. 

VXa(r) = – 9
2
a 3

8

1/3

r1/3(r)

r



The Slater exchange functional

The predecessor to modern DFT is Slater’s Xa method.

This method was formulated in 1951 as an approximate

solution to the Hartree-Fock equations.  In this method the

HF exchange was approximated by:

The exchange energy EXa is a fairly simple function of the

electron density r.

The adjustable parameter a was empirically determined

for each atom in the periodic table.  Typically a is between

0.7 and 0.8.

EXa[r] = – 9
8
a 3

8

1/3

r4/3(r)dr
0





The VWN Correlation Functional

In ab initio calculations of the Hartree-Fock type electron

correlation is also not included.  However, it can be included

by inclusion of configuration interaction (CI).  In DFT 

calculations the correlation functional plays this role. 

The Vosko-Wilk-Nusair correlation function is often added

to the Slater exchange function to make a combination

exchange-correlation functional.

Exc = Ex + Ec

The nomenclature here is not standardized and the 

correlation functionals themselves are very complicated

functions. The correlation functionals can be seen on the 

MOLPRO website 

http://www.molpro.net/molpro2002.3/doc/manual/node146.html.



Generalized gradient approximation (GGA).  Take density 
gradient into account.  Useful for molecules.

Spin density functional theory.  Two independent variables:
density and magnetization.

Exact exchange density functional theory.  Calculate 
exchange exactly and correlation approximately using DFT.

Generalized density functional theory.  Modify K-S energy 
partitioning to obtain a non-local hamiltonian.

Extensions of the LDA approach     

m(r) = – m0 r – r



The GGA approach takes into account variations in the 
density by including the gradient of the density in the 
functional.  One commonly used GGA functional is that of 
Becke.

This functional has only one adjustable parameter, b.
The value of b = 0.0042 was determined based on the best
fit to the energies of six noble gas atoms using the sum of
the LDA and GGA exchange terms.

The GGA option in DMol3 is that of Perdew and Wang.

Generalized Gradient Approach (GGA)     

Vxc

B
= – br1/3 x2

1 + 6bx sinh
– 1

x
, x =

r

r4/3



As was discussed above for the Slater exchange functional
(no gradient), the VWN correlation functional provides a 
significant improvement in the calculation of the energies
and properties such as bulk modulus, vibrational 
frequencies etc.  In a similar manner the Becke exchange 
functional (including a gradient correlation) and the Lee-
Yang-Parr functional are used together.  The Lee-Yang-Parr
or LYP correlation functional is quite complicated.  It can be 
viewed on the MOLPRO website.

Thus, two of the most commonly used functionals are:
S-VWN Slater exchange - VWN correlation (no gradients)
B-LYP Becke exchange - LYP correlation (gradients)

Lee-Yang-Parr Correlation Functional     



As a practical example of DFT methods we calculate the 
energy and electronic properties of the water molecule.
In order to carry out the DFT calculation you will need a 
set of starting nuclear coordinates.  I will use a set of 
coordinates that is clearly not correct (assuming a 90o

H-O-H bond angle) for purposes of illustration.  The 
coordinate file has the following appearance.
> vi h2o.car

Example: H2O (the car file)     

!BIOSYM archive 3

PBC=OFF

!DATE     Jan 17 16:58:17 2004

O1       0.000000000    0.000000000    0.000000000 H2O1 1      o       O  -0.820

H2       0.000000000    1.000000000    0.000000000 H2O1 1      h       H   0.410

H3       1.000000000    0.000000000    0.000000000 H2O1 1      h       H   0.410

end

end



Since we know the geometry is not correct the calculation
type must be optimize or optimize_frequency.  The latter
performs the frequency calculation once the geometry is
optimized.  If the molecule is smaller than 15 atoms it 
probably reasonable to select optimize_frequency using 
DMol3 and running less than 4 processors.  For now we 
can leave all other options in the input file as the default 
values. 
> vi h2o.input

Example: H2O (the input file)     

#Calculate               optimize

Calculate               energy

#Calculate               optimize_frequency

#Calculate               ts_search

#Calculate               frequency

#Calculate               gradient

#Calculate               Molecular_Dynamics

#Calculate               Simulated_Annealing



Since we know the geometry is not correct the calculation
type must be optimize or optimize_frequency.  The latter
performs the frequency calculation once the geometry is
optimized.  If the molecule is smaller than 15 atoms it 
probably reasonable to select optimize_frequency using 
DMol3 and running less than 4 processors.  For now we 
can leave all other options in the input file as the default 
values. 
> vi h2o.input

Example: H2O (the input file)     

#Calculate               optimize

#Calculate               energy

Calculate               optimize_frequency

#Calculate               ts_search

#Calculate               frequency

#Calculate               gradient

#Calculate               Molecular_Dynamics

#Calculate               Simulated_Annealing



Let’s look at a few important options in the input file. 
Use the search command and type
/functional
The functional selected is gga (i.e. GGA).  Other common
choices are blyp (BLYP) and vwn (SVWN) that were 
discussed earlier.
The search for /basis.
Here you will see that the default is DNP.  This is the 
equivalent of a double-zeta quality basis set with one 
polarization function.  The basis set in DMol3 is numerical.
It does not use Gaussian fucntions.  One aspect of DMol3 
that is interesting is the ability to design and improve the
basis set (but this is an advanced topic beyond our present
objective).

Example: H2O (the input file)     



Functional              gga

#Functional              pwc

#Functional              ks

#Functional              jmw

#Functional              vwn

#Functional              vwn-bp

#Functional              bp

#Functional              blyp

#Functional_Post_LDA     off

#Functional_Post_LDA     BLYP

Example: H2O (the functional)     



#Basis                   min

#Basis                   dn

#Basis                   dnd

Basis                   dnp

#Basis                   extended

#Basis                   all

#Basis                   user

#  1  7 0 0 0 0 2 2 2

#  6 11 0 0 0 0 0 0 0 2 2 2 2 

#  7 11 0 0 0 0 0 0 0 2 2 2 2 

#  8 11 0 0 0 0 0 0 0 2 2 2 2 

# 44 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Example: H2O (the basis set)     



To launch the job we will use the following script: 
> dft_input.job h2o DIRECTORY > h2o.job
The script tells the computer how many processors to use
and how much memory to allocate Then you will submit the 
job.  

You can see the queues typing:
> bqueues

To launch the job type:
> bsub < h2o.job

Example: H2O (the job file)     



For H2O you will not have long to wait.  In about 1 minute
the output (outmol) file appears.  You can see it by typing
> vi h2o.outmol
Go to the bottom by typing <shift>G.  You will see how long
the job took.  Go back to top by typing :1.  Let’s check the
job.  Searching for the text /electrons (and then following 
that with the letter n to find the second occurrence) you will
see the number of basis functions and electrons in the 
calculation.

Example: H2O (the outmol file)     

Symmetry orbitals

n  norb    representation

1    24        a    

total number of valence orbitals:     24

molecule charge=      0.0   active electron number=      10.0

including core=      10.0   (without charge=             10.0)



Just above you will see the description of the numerical basis
set.

Example: H2O (the basis set)     

----------------------------------------------------------------------

Specifications for Basis Set Selection

----------------------------------------------------------------------

atomic cutoff radius  6.00 au

Hydrogen     nbas= 1  z=  1.  3 radial functions,  e_ref= -0.0461310Ha

n=1  L=0  occ= 1.00 e=      -0.222910Ha        -6.0657eV

n=1  L=0  occ= 0.00 e=      -0.844526Ha       -22.9807eV

n=2  L=1  occ= 0.00 e=      -1.999912Ha       -54.4204eV

Oxygen       nbas= 2  z=  8.  7 radial functions,  e_ref= -0.0607807Ha

n=1  L=0  occ= 2.00 e=     -18.896548Ha      -514.2014eV

n=2  L=0  occ= 2.00 e=      -0.868840Ha       -23.6424eV

n=2  L=1  occ= 4.00 e=      -0.322562Ha        -8.7774eV

n=2  L=0  occ= 0.00 e=      -2.144678Ha       -58.3597eV

n=2  L=1  occ= 0.00 e=      -1.593751Ha       -43.3682eV

n=3  L=2  occ= 0.00 e=      -2.722082Ha       -74.0717eV

n=3  L=2  occ= 0.00 e=      -1.383811Ha       -37.6554eV  eliminated

----------------------------------------------------------------------



From this point search for the text /SCF and you will see the
how the energy of the calculation is altered as the variational
principle is applied to find the best coefficients. Convergence
is set in the input file to 10-6 Hartrees.

Example: H2O (the SCF cycles)     

~~~~~~~~~~~~~~~~~~~~ Start Computing SCF Energy/Gradient ~~~~~~~~~~~~~~~~~~~~

Total E (au)     Binding E (au)     Convergence     Time (m)   Iter

-----------------------------------------------------------------------------

Ef       -76.4907801       -0.4371008         0.16E+00        0.021      1

Ef       -76.4409749       -0.3872957         0.91E-01        0.024      2

Ef       -76.4308187       -0.3771395         0.61E-01        0.026      3

Ef       -76.4309567       -0.3772774         0.25E-01        0.028      4

Ef       -76.4296483       -0.3759690         0.32E-02        0.030      5

Ef       -76.4296274       -0.3759482         0.13E-02        0.032      6

Ef       -76.4296135       -0.3759343         0.27E-03        0.034      7

Ef       -76.4296117       -0.3759324         0.62E-04        0.036      8

Ef       -76.4296120       -0.3759327         0.36E-04        0.038      9

Ef       -76.4296122       -0.3759329         0.11E-05        0.040     10

Ef       -76.4296122       -0.3759329         0.76E-06        0.042     11



Once convergence is reached the energies of the molecular
orbitals is calculated.  Only one unoccupied orbital is listed
here.  The others are occupied.  More detailed output can be
requested.  The MOs can be output as shown on the website. 

Example: H2O (the energy states)     

Energy of Highest Occupied Molecular Orbital  -0.24970Ha    -6.795eV

state                         eigenvalue        occupation

(au)          (ev)

1   +   1   a        -18.762994      -510.567     2.000

2   +   2   a         -0.912899       -24.841     2.000

3   +   3   a         -0.434975       -11.836     2.000

4   +   4   a         -0.354427        -9.644     2.000

5   +   5   a         -0.249700        -6.795     2.000

6   +   6   a          0.027694         0.754     0.000



At this point the program starts the geometry optimization.
Notice that the molecule has been transformed so the 
symmetry axis is coincident with z axis, but otherwise the
geometry is not changed yet.  Search on the word /Cycle
(case must right!) and track the progress of the optimization.

Example: H2O (the geometry optimization)     

** GEOMETRY OPTIMIZATION IN CARTESIAN COORDINATES **

Searching for a Minimum

Optimization Cycle:   1

Input Coordinates (Angstroms)

--------------------------------------------------

ATOM       X           Y           Z

1    O     0.000000    0.000000   -0.471405

2    H     0.707107    0.000000    0.235702

3    H    -0.707107    0.000000    0.235702

--------------------------------------------------



It took 6 cycles in the present example.  The final cycle had 
the appearance:

Again the criteria for convergence are set in the input file.
Note that minimization of the energy is one criterion for
convergence.  Keep in mind that a set of iterations to find
the SCF coefficient is carried for each geometry (i.e. 6 times
in the present case).  If you look at the car file you will find
the updated geometry (original car file is overwritten).

Example: H2O (convergence)     

Cycle    Total Energy   Energy change   Max Gradient   Max Displacement

opt==    6       -76.4352059     -0.0000006        0.000588       0.001194

!BIOSYM archive 3

PBC=OFF

!DATE     Jan 22 02:24:58 2004

O1       0.000000000    0.000000000   -0.400578191 H2O1 1      o       O  -0.820

H2       0.760530176    0.000000000    0.200289095 H2O1 1      h       H   0.410

H3      -0.760530176    0.000000000    0.200289095 H2O1 1      h       H   0.410

end

end



The properties are calculated next.

+++ Entering Properties Section +++ 

Charge partitioning by Hirshfeld method: 

O    1 charge                          -0.3008

H    2 charge                           0.1503

H    3 charge                           0.1503

symmetry unique atoms:   1   2   3

dipole moment vector (au):     0.00000     0.00000     0.76730

dipole magnitude:              0.76730 au               1.9503 debye

Mulliken Population analysis

Mulliken atomic charges:

charge    spin 

O(  1)  -0.487   0.000

H(  2)   0.243   0.000

H(  3)   0.243   0.000

Example: H2O (charges and dipole)     

Gas phase water

experimental value

is 1.86 Debye.



Electrostatic potential fitting is considered more accurate
then Hirshfeld or Mulliken charge. 

Limits of the ESP box:

-6.850260 -6.377828 -6.963917

6.850260  6.377828  5.791740

==================================

Summary of ESP fitting calculations

Number of points:    6288.76

Spacing between:        0.25Ang

Sigma:            0.2059E-02

RMS of V(exact):  0.1703E-01

RRMS fit:              12.09%

ESP-fitted charges:

n  Elem   chg   vdW(in) vdW(ex)

1  O     -0.704 1.72   3.22

2  H      0.352 1.30   2.80

3  H      0.352 1.30   2.80

==================================

Example: H2O (esp fitting)     

TIP3P water used

in MD force fields

has 

O -0.82

H  0.41

H  0.41

However, this is

a gas phase calculation.

We would need to model

a water cluster or in

periodic boundaries to 

obtain comparable values.



Searching on the text /freq you will find the calculated 
vibrational frequencies.

vibrational frequencies, intensities

mode     au_amu        cm-1      km/mol

7    0.315034      1619.4       69.54

8    0.721257      3707.6        6.72

9    0.743767      3823.3       43.56

Example: H2O (frequencies)     

Experimental values are: Error

bending mode 1654 cm-1 2%

asymmetric stretch 3825 cm-1 8%

symmetric stretch   3935 cm-1 3%


