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Experimental observation of 

hydrogen atom 

• Hydrogen atom emission is “quantized”. It 

occurs at discrete wavelengths (and therefore 

at discrete energies).

• The Balmer series results from four visible 

lines at 410 nm, 434 nm, 496 nm and 656 nm.

• The relationship between these lines was 

shown to follow the Rydberg relation.



The Solar Spectrum

• There are gaps in the solar emission

called Frauenhofer lines.

• The gaps arise from specific atoms in 
the sun that absorb radiation.



Atomic spectra

• Atomic spectra consist of series of narrow lines.

• Empirically it has been shown that the 

wavenumber of the spectral lines can be fit by

where R is the Rydberg constant, and n1 and n2

are integers.



Electronic Structure of 

Hydrogen

The Schrödinger equation for hydrogen

Separation of variables: Radial and angular parts

Hydrogen atom wavefunctions Expectation values

Spectroscopy of atomic hydrogen



Schrödinger equation for hydrogen:

The form of the potential

• The Coulomb potential between the electron and the proton is

V = -Ze2/4pe0r 

• The hamiltonian for both the proton and electron is:

• Separation of nuclear and electronic variables results in an 

electronic equation in the  center-of-mass coordinates:



Schrödinger equation for hydrogen:  

The kinetic energy operator

The Schrödinger equation in three dimensions is:
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The operator del-squared is:

The procedure uses a spherical polar coordinate system.

Instead of x, y and z the coordiantes are q, f and r.
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Spherical Polar Coordinates



Separation of variables

The del-squared operator in spherical polar coordinates is:

It  is not possible to solve the equation with all three variables 

simultaneously. Instead a procedure known as separation of 

variables is used. 

The steps are:

1. Multiply both sides by 2r2 

2. Substitute in (r,q,f) = R(r)Y(q,f)

3. Divide both sides by R(r)Y(q,f)



Using a separation constant called b we can write the 

Schrodinger equation as two separate equations.

We write the total wave function as a product of two wave

functions.

Then we divide the radial equation by Ym
l and the angular 

equation by R to get two separate equations.



The wavefunctions of a rigid rotor are 

called spherical harmonics

The solutions to the q and f equation (angular part)
are the spherical harmonics Y(q,f )= Q(q)F(f)
Separation of variables using the functions Q(q) 
and F(f) allows solution of the rotational wave 
equation.

We can obtain a q and f equation from the above
equation.



The volume element in spherical 

polar coordinates

To solve the Schrodinger equation we need to 

integrate of all space.   This is the same thing 

as performing a volume integral.  The volume 

element is:

This integrates to 4p, which is the 

normalization constant.  4p stearadians also 

gives the solid angle of a sphere.

dV = r2dr sinqdq df



Separation of variables

Multiply through by sin2q/h2.

The spherical harmonics arise from the product
of QF after substituting Y = QF 



Separation of variables

When we divide by Y = QF, we obtain

Now, these equations can be separated using 
separation constant m2.

The operators in variables q and f operate on function
Q and F , respectively, so we can write



The F equation

We have already seen the solution to the f equation
from the example of rotation in two dimensions.

which has solutions

Now that we have defined the values of m as positive 
and negative integers, the q equation is also defined.



Convert the q-equation into the LeGendre polynomial 

generating equation

Can be written as 

Let x = cosq. 

Therefore



Using the product rule to take the derivative with respect to x, 

and making the substitution 

we find,



The solution of q equation gives

Legendre polynomials

Substitute x = cosq and the equation becomes:

The solution requires that b = with    = 0,1,2..
Where   is the rotational quantum number.
The azimuthal quantum number is m.
The magnitude of .            .  The solutions are Legendre
polynomials
P0(x)=1 P2(x)=1/2 (3x2 - 1)
P1(x)=x P3(x)=1/2 (5x3 - 3x)

.



The spherical harmonics as solutions to  

the rotational hamiltonian

The spherical harmonics are the product of the
solutions to the q and f equations.  With norm-
-alization these solutions are

The m quantum number corresponds the 
z component of angular momentum.  
The normalization constant is



The form of the spherical 

harmonics

Y0
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Including normalization the spherical harmonics are
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The form commonly used to represent p and d 
orbitals are linear combinations of these functions



Euler relation

Linear combinations are formed using the Euler relation

Projection along the z-axis is usually taken using 
z = rcosq.  Projection in the x,y plane is taken using
x = rsinqcosf and y = rsinqsinf

e+if = cosf + i sinf    , e-if = cosf - i sinf

cosf =                       , sinf =e+if + e-if

2

e+if - e-if

2i



Solutions to the 3-D rotational 

hamiltonian
• There are two quantum numbers                           

is the total angular momentum quantum number                

m is the z-component of the angular momentum   

• The spherical harmonics called Y    are functions whose 
probability |Y |2 has the well known shape of the s, p and 
d orbitals etc.

= 0  is s  ,  m = 0

= 1 is p  ,  m = -1, 0 , 1

= 2 is d  ,  m = -2 , -1, 0 , 1, 2

= 3 is f  ,  m = -3 , -2 , -1, 0 , 1, 2, 3

etc.



Space quantization in 3D
• Specification of the 

azimuthal quantum number 
mz implies that the angular 
momentum about the z-axis 

is Jz =  hm.

• This implies a fixed 
orientation between the total 
angular momentum and the 
z component.

• The x and y components 
cannot be known due to the 
Uncertainty principle.

M = -1

M = +2

M = 0

J = 2

M = +1

M = -2

z



Standing waves on a sphere

These are the spherical harmonics Ylm, which

are solutions of the angular Schrodinger equation.



Orthogonality of 

wavefunctions
• Ignoring normalization we have:

• s     1  

• p     cosq, sinqcosf, sinqsinf

• d 1/2(3cos2q - 1), cos2qcos2f , cos2qsin2f ,           

cosqsinqcosf , cosqsinqsinf

• The differential angular element is sinqdqdf/4p

• The limits q = 0 to p and f = 0 to 2p. 

• The angular wavefunctions are orthogonal.



Orthogonality of 

wavefunctions
• For the theta integrals we can use the substitution 

• x = cosq and dx = sinqdq

• For example, for s and p-type rotational wave functions we 

have

< s | p >  cosq sinq dq
0

p

= x dx
1
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= x2
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MAPLE 

worksheet on spherical harmonics

• The form of the spherical harmonics Ylm (q,f) is quite 

familiar.  The shape of the s-orbital resembles the first 

spherical harmonic Y00. 

• Attached to this lecture are three MAPLE worksheets 

that illustrate the s, p and d orbitals respectively.  The 

idea is to obtain an interactive picture of the 

mathematical form and the plots of the functions.

• Disclaimer: The spherical harmonics have been 

simplified by formation of linear combinations to remove 

any complex numbers.    



• The Y00 spherical harmonic has the form of an

s-orbital.

• There is only one angular function for 

MAPLE 

worksheet on spherical harmonics



• The Y10 Y11 , and Y1,-1 spherical harmonics have the 
form of p-orbitals.

• There are three angular functions for 

MAPLE 

worksheet on spherical harmonics



• The Y20 , Y21 , Y2,-1 , Y2,2 and Y2,-2 spherical 
harmonics have the form of d-orbitals.

• There are five angular functions for.

MAPLE 

worksheet on spherical harmonics



Angular momentum operators



The definition of the angular momentum operators in 

spherical polar coordinates are:

The total angular momentum is:

which can be expressed in terms of the angular derivatives,



We can define a raising and lowering operator for angular 

momentum using the definition:

This is also known as the ladder operator, and it has the form,

We can prove the valuation of the angular momentum 

commutators

Raising and lowering operators



To prove that these are the commutators we need to 

evaluate the eigenvalues. We can use the nomenclature

From the known properties of the angular momentum operator in 

obtained in the solution of the angular equation we have:

We can use the commutator to evaluate the ladder operator, 

We want to evaluate the ladder operator using

Using the definition of the commutator we have



Thus, we see that                   is an eigenstate of      with 

eigenvalue

. 

Eigenvalues for the 

raising and lowering operators

This above result leads to an operator equation for the 

Raising and lowering operators. Now we must calculate the

Eigenvalue:   



If we operate with the      ladder operator on the highest 

eigenvalue, we obtain

There are            values of m, which range from - to   .

From the definition of the total angular moment, we can replace 

the x and y terms using the definition of the ladder operator,

From the commutator

Therefore,

Properties of raising and lowering operators



This gives,

Thus,

We can show that the eigenvalue for the ladder operators is,

.

Likewise, we obtain 0 when using the lowering operator on the 

lowest state

Thus, if we choose             as our test function we have,


