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The linear combination of atomic 

orbitals (LCAO)

Calculations of the energy and properties of molecules

requires hydrogen-like wave functions on each of the

nuclei. The Hartree-Fock method begins with assumption 

That molecular orbitals can be formed as a linear combination

of atomic orbitals.

The basis functions fm are hydrogen-like atomic orbitals

that have been optimized by a variational procedure. 

The HF procedure is a variational procedure to minimize

the coefficients Cmi.  Note that we use the index m for 

atomic orbitals and i or j for molecular orbitals. 



Common types of atomic orbitals

Slater-type orbitals (STOs)

The STOs are like hydrogen atom wave functions. The problem with 

STOs arises in multicenter integrals. The Coulomb and exchange 

integrals involve electrons on different nuclei and so the distance r 

has a different origin.

Gaussian-type orbitals (GTOs)

Gaussian orbitals can be used to mimic the shape of exponentials, 

i.e. the form of the solutions for the hydrogen atom.  Multicenter 

Gaussian integrals can be solved analytically.



STOs vs GTOs

GTOs are mathematically easy to work with



STOs vs GTOs

GTOs are mathematically easy to work with, but the 

shape of a Gaussian is not that similar to that of an 

exponential.



STOs vs GTOs

Therefore, linear combinations of Gaussians are used to

imitate the shape of an exponential.  Shown is a 

representation of the 3-Gaussian model of a STO.



Double-zeta basis sets
Since the remaining atoms have a different exponential 

dependence than hydrogen it is often convenient to 

include more parameters.

The second exponential is a diffuse function.  It accounts

for properties of a valence electrons involved in bonding.

When GTOs are used there are always multiple Gaussians required 

because the shape of Gaussians must be matched as closely as 

possible to that of exponentials.  In a double-zeta basis there may 

be up to 3 Gaussians used to represent the first exponent za and

1 for the second exponent zb.  In a so-called 6-31G basis set in the 

GAUSSIAN program, there are 6 Gaussians for core electrons and 

then 3 for za and 1 for zb.



Application of the 

Variational Method

to Fock Equations



The HF procedure uses the variational method to obtain

the value of parameters that minimizes the energy 

subject to the constraint the wave functions remain orthogonal

The minimization of an equation subject to a constraint

is carried out using the method of LaGrange undetermined

multipliers.

Note that the multiplier is the energy E and it will be

determined during the procedure.

The variation procedure applied 

to the HF wave functions



Including the basis of atomic orbitals the LaGrangian can

be written as:

In the variation method we are looking for the wave 

function f that will minimize the energy.  Here the condition

is that the variation in the energy dE = 0 as indicated on

the previous slide.  This condition assures that E is

stationary.  A stationary point is usually a minimum. The

differential is:

The variational method in HF



Conversion of the LaGrangian to 

a series of linear equations

The first variation in the Lagrangian is set equal to zero.

Collecting the terms we have



This analysis leads to the matrix equations.

The explicit form of the matrix is:

Expression of the matrix equations

H11 – EiS11 C1i + H12 – EiS12 C2i + ... + H1N – EiS1N CNi = 0

H21 – EiS21 C1i + H22 – EiS22 C2i + ... + H2N – EiS2N CNi = 0

....

HN1 – EiSN1 C1i + HN2 – EiSN2 C2i + ... + HNN – EiSNN CNi = 0



The secular determinant
There are N equations and N + 1 unknown variables:

C1i, C2i, C3i, …, CNi, and Ei.

In order for the equations to have meaningful (non-zero) 

solutions they must comprise a secular determinant

which leads to N eigenvalues, Ei (i = 1,2,3,…N).

The solutions for the Yi = C1if1 + C2if2 + …CNifN under the

constraint:

det A = det

H11 – ES11 H12 – ES12 H13 – ES13 ......

H21 – ES21 H22 – ES22 H23 – ES23 ......

H31 – ES31 H32 – ES32 H33 – ES33 ......

. . .

. . .

= 0

CmiCiSm
 = 1

N


m = 1

N

= 1



The fock hamiltonian is an effective one-electron hamiltonian

The matrix representation for the overlap and interaction 

energies is:

Matrix representation

S =

S11 S12 S13 ...S1N

S21 S22 S23 ...S2N
... ... ... ...
SN1 SN2 SN3 ...SNN

H =

H11 H12 H13 ...H1N

H21 H22 H23 ...H2N
... ... ... ...
HN1 HN2 HN3 ...HNN

Ci =

C1i

C2i
...
CNi



Thus, HCi = EiSCi Next, we define the matrices of coefficients 

and eigenvalues as:

Then the matrix form is HC = SCE.  This system of equations

is diagonalized if det|H - ES| = 0.  However, this is possible

only in the MO basis.

Eigenvalues are energies and 

eigenvectors are MOs

C =

C11 C12 C13 ...C1N

C21 C22 C23 ...C2N
... ... ... ...
CN1 CN2 CN3 ...CNN

, E =

E11 0 0 ... 0

0 E22 0 ... 0
... ... ... ...
0 0 0 ... ENN



The Roothan matrix procedure
The equations are solved on a computer using the Fock operator

which is solved for all of the basis functions (both occupied and 

unoccupied).  The coefficients obtained from this calculation 

are then used to calculate the Fock matrix whose elements are:

Note: only occupied basis functions in the Fock operator.

The Fock matrix is then substituted back into the first 

equation and coefficients are recalculated. The procedure 

is carried out until a self-consistent minimum energy is found.  

The resulting self-consistent field (SCF) energy is the 

Hartree-Fock procedure. 

FmvCvi
v

=  i SmvCvi
v

Fmv = <m|h|v> + d,<md|g|> + d,
ex<md|g|

d,

d, = Cd,iC,i
i, occupied

, d,
ex = Cd,iC,i

i, occ and same spin
, g = 1

|r – r|



The Density Matrix



We have discussed the general idea that each electron 

experiences the combined electrostatic potential of all of the 

other electrons. The density matrix is the way that the potential 

is calculated from the coefficients of the molecular orbitals. 

Thus, the density matrix is the starting point for the variational

procedure. The charge density is equal to the sum of the 

squares of the occupied molecular orbitals:

The Density Matrix



These equations define the density matrix as:

Using this definition we can rewrite the closed shell Fock

operator to include the density matrix. This shows how 

the mean-field potential enters into the calculation. 

The Density Matrix



Using the Fock operator we can obtain the Fock matrix

The core hamiltonian Hm
core is a one-electron hamiltonian

that only needs to be evaluated once in the procedure. The  

Gm matrix is a two-electron matrix that changes on each 

iteration.

The Density Matrix



The self-consistent field method

The effective or average potential can be used in a

one electron hamiltonian operator for electron 1

H1

eff
(r1) = – 1

2
 1

2
– 2

r + V1

eff
(r1)

The Schrödinger equation is solved for electron 1

H1

eff
f(r1) = 1f(r1)

Start with a trial function f(r2) and solve for f(r1).

Using f(r1) calculate an effective potential for 2 

and solve for f(r2).  Continue until convergence is 

reached.



The HF procedure is an iterative computation of the 

variational coefficients, which are the coefficients of the 

molecular orbitals. The iterations proceed until the change 

in the energy on each step is less than a convergence 

criterion. A typical criterion is less than 10-6 Hartrees

(< 0.0026 kJ/mol). The concept of a self-consistent field (SCF) 

emerges from the fact that the Fock equations have reduced 

the many electron problem to a one-electron problem. 

The potential for each electron arises from the mean potential 

of all of the other electrons. The solution must be self-consistent 

in terms of the potential on each electron. As the potentials 

become more consistent the energy decreases according to 

the variational principle. That is why the change in the energy 

is the convergence criterion for the SCF calculation.

The self-consistent field method



We outline the mathematical steps in the procedure in the following:

1. Specify a molecules with coordinates {R}, atomic charges {Z}, 

number of electrons {N} and a basis set {f}.

2. Based on an initial guess for the coefficients calculate Sm and 

the two-electron integrals Jm and Km.

3. Diagonalize the overlap matrix S, i.e. XTSX = I

4. Calculate the density matrix P

5. Calculate the matrix G from the density matrix and the 

two-electron integrals.

6. Add G to the Hamiltonian to obtain the Fock matrix, F = Hcore + G.

7. Calculate the transformed Fock matrix F' = XTFX.

8. Diagonalize F' to obtain C' and .

9. Calculate C = XC'.

10. Form a new density matrix P from C.

11. Check for convergence. If the procedure has not converged, 

return to step 5 with the new density matrix.

12. If the procedure has converged then proceed to calculate 

molecular orbitals and any requested molecular properties.

Self-Consistent Field Procedure



Summary of methods
1. Determine the optimum atomic orbitals. This is done

by a variational procedure for each atom using the exponent

z as the parameter. More than one STO can be used per 

atomic orbital (e.g. double-zeta basis). The GTO requires 

parameterization of multiple Gaussian functions per STO.

2. Form linear combinations of the atomic orbitals at the 

positions indicated by a molecular geometry. Note that this

is initially just a guess and the set of coefficients, which gives 

The lowest energy must be calculated in a number of tries 

(cycles) of the HF procedure. The HF procedure involves 

Solution of the HC – ESC = 0 matrix equations.

3. Perform the HF procedure repeatedly until a self-consistent

solution of the equations for the coefficients is obtained. This 

is the self-consistent field (SCF) method.


