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Introduction

An approximate method for many-electron atoms was first 

proposed by Hartree.  In this method the atomic wave 

function is a product of one-electron wave functions.  This

an extension of what we have seen for helium.

In this equation the ri are the positional coordinates and a 

spin coordinate for each electron ri = (xi,yi,zi,mi).  As we

have seen for the hydrogen atom, spherical polar 

coordinates work better than Cartesian coordinates.  The

spin coordinate can be spin up a or spin down b.

 r1,r2,r3...rN = 1 r1 2 r2 3 r3 ...N rN



The Hartree approximation works well for atoms.  However,

the form of the wave function is not correct and the method

fails for molecules.  One property of the wave function is

that is must change sign when any two electrons are 

interchanged.  Around 1930 both Fock and Slater proposed

to fix the problem with Hartree model by introducing a

wave function that is anti-symmetric with respect to electron

exchange

The wave function is the determinant of the matrix.

Limitations of the Hartree approximation



We reintroduce the hamiltonian for He to introduce commonly

used abbreviations.

The atomic electronic hamiltonian
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The kinetic energy operator is the 

sum of the kinetic terms for all of the 

electrons.  The external potential is 

the field of nuclei (Coulomb 

attraction) felt by the electrons.



The Born-Oppenheimer approximation states that electronic

and nuclear motion can be separated because of the large

difference in mass (1 proton has 1836 times the mass of an

electron).  Thus, the nuclear kinetic energy and repulsion terms

are not included.  However, it is important to understand that

the nuclear terms are used for translational, rotational and

vibrational motion.  Vibrations are of particular relevance since

the quantum chemical calculation of vibrational frequencies

is the basis for parameterization of classical molecular force 

fields.

The nuclear hamiltonian
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Using these approximations we can write the hamiltonian

of an atom as

The first two terms alone comprise a set of N hydrogen

atom calculations which can be solved exactly.

The total hamiltonian in this nomenclature is:

Note that the inclusion of the electron-electron repulsion

term Uee makes it impossible to solve the Schrödinger

equation using this hamiltonian.

The effective hamiltonian



The method is to solve the Schrödinger equation for each 

individual electron in the field of all of the other electrons.

If we assume that we know the individual wave functions

i(r) for each electron we can calculate the electron density

according to:

The total electron density is:

However, the kth electron does not interact with itself so

Must subtract the density of rk from the total.

The Hartree approximation



The kth electron is now treated as a point charge in the 

field of all of the other electrons.  This procedure takes

the many-electron problem and simplifies it to many

one electron problems.

Overview of the Hartree method
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Many-electron system

All electron-electron repulsion

is included explicitly.

One-electron system

with remaining electrons

represented by an average 

charge density.

Mean field approach



The interaction of the point charge with the electron 

density is

Making this approximation we can write

and the hamiltonian Hel now consists of one-electron

operators:

The many-electron Schrödinger equation can now be

Solved as N one-electron Schrödinger equations

The Hartree procedure



The set of one-electron Schrödinger equations can be

solved iteratively to find the best energy.  According to

the variational principle the true energy will always be

lower than the energy calculated using this method.

However, this method counts the interaction between each

pair of electrons twice.  Therefore, we cannot simply add

the individual one-electron energies ei to obtain the total

energy E.  We correct for this using the Coulomb integral

between each pair of electrons Jij

The Coulomb integral

J ij =
r i r1 r j r2

|r2 – r1|
dr1dr2



The determinantal wave function adds a new term to

the Hartree energy, the exchange term Kij.

We compare the Coulomb and exchange integrals below.

Notice that the difference is a rather subtle swap of the 

indices i and j.  This small change has a profound effect

on the contribution calculated by the integral.

The exchange integral
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The Fock equations
The procedure leads to the Fock equations.

The Fock operator is a one-electron operator

The choice of electron 1 is arbitrary.  These equations

can written for all of the electrons.  The Coulomb and

exchange terms are


