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We can apply the variational principle to the average energy:

In this case we can define our basis as

where the variational parameters are the coefficients c1 and 

c2. Thus, we will use this definition of a basis to obtain an 

expression for the energy and subsequently find the 

mininmum energy using the conditions,
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The numerator is 

Which has four terms

We can use the following notation for the energies to simplify 

the presentation,

The terms Hii are the energies of an electron on nucleus i and 

the terms Hij are resonance integrals that represent the 

contribution to the energy from an electron shared between 

nuclei i and j.
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In an analogous manner we can express the denominator as,

Which has four terms

We can use the following notation to simplify the presentation,

where the integrals Sij are overlap integrals.  The integrals Sii = 1 
since the atomic wavefunctions are normalized.
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Using these definitions and substituting into the equation for the 

energy we find.

We now apply the variational principle by taking the 

derivatives with respect coefficients (the coefficients are the 

variational parameters). We can rewrite the equation as:

Then take the derivative.  Using the product rule we find:
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Since the derivative of E with respect to c1 is zero we have

Collecting terms, this equation can be written as

Using a similar procedure for c2 we find:
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Variational energy of a diatomic

This general case cannot be factored further. However, if we 

assume that H11 = H22, this implies that  c1 = c2. Then we can 

make the following identifications,

The determinant becomes:



The factor of 2 in both numerator and denominator cancel.  

Inside the square root we have:

which simplifies to

Variational energy of a diatomic

After simplification the energies for the two levels are:



The corresponding wave functions are:

These solutions justify the treatment of homonuclear diatomics. 

We can form linear combinations of the various orbitals (1s, 2s, 

2px,y, 2pz etc.) and that for each of them we will construct and 

bonding (+) and anti-bonding (-) MO for the diatomic. 

For two s orbitals the irreducible representations are 

corresponding to the bonding and anti-bonding linear 

combinations, respectively.
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To continue the procedure for the remaining 
diatomic molecules in the first row of the periodic table, 
we can consider the analogous population 2s orbital.  
However, this cannot be done without also included the 3 
2p orbitals, 2px, 2py and 2pz. Thus, we can consider the 
remaining diatomic molecules in the first row of the 
periodic table to arise from population of the eight 
possible linear combinations.

In addition to the 2s orbitals we can construct 
bonding and anti-bonding linear combinations from the 
2p orbitals using a similar approach. We must distinguish 
between the 2pz, which lie along the internuclear axis and 
the 2px,y, which are perpendicular to that axis. The 2pz

orbitals for the following linear combinations, 

Wave functions of a diatomic



In addition to the 2s orbitals we can construct bonding 

and anti-bonding linear combinations from the 2p orbitals

using a similar approach. We must distinguish between the 

2pz, which lie along the internuclear axis and the 2px,y, which 

are perpendicular to that axis. The 2pz orbitals for the 

following linear combinations, 

These orbitals have the appearance:
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-bonding linear combinations
The px,y orbitals form a degenerate set and transform as 
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Application to diatomic molecules
Li2 B2Be2 C2 N2 O2 F2
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• Considering only valence electrons we 

can fill the molecular orbitals of diatomics.

• Linear combinations of 2s, 2pz give s orbitals.

• Linear combinations of 2px,y give p orbitals.

• The relative energy ordering depends on the

number of electrons in occupied orbitals.



Nitrogen Molecular Orbitals

Example of a Homonuclear Diatomic

• Isosurfaces represent ff of orbital    

showing 90% of total probability.

• The spatial wavefunction is an LCAO.

• Core electrons are not included. 

• There are five electrons for each N atom.



Dinitrogen 1 MO



N2 2* MO



N2 1 MO

This is a doubly degenerate orbital.  

Only one of the two is shown.



N2 3 MO



N2 2* MO

This is a doubly degenerate orbital.  

Only one of the two is shown.



N2 4* MO



Energy level diagram for N2

• Negative energies 

represent bonding 

interactions (< 0 eV)

• For N2 all there are 

ten electrons so all 

orbitals are filled 

through 3s 

• Only valence 

orbitals are shown
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Ground State Molecular Properties

• Bond length (structure).

• Vibrational frequency:

– Calculated at stationary point.

– Depends on accuracy of second 

derivative matrix with respect to nuclear 

displacement.

• Dipole moment (clearly zero for N2).



Koopman’s theorem

We can think of the individual orbitals as representing the

energy required to pull an electron off of the molecule out of

an occupied orbital or add one to an unoccupied orbital.  

Such an approach is a frozen electron approximation. This 

means that we assume that none of the remaining electrons 

will respond to the electron removal or addition.  The formal 

statement of this approach is Koopman’s theorem.

The ionization potential and electron affinity can be obtained 

From the energy of removal or addition of an electron to a 

molecular orbtial at the single-determinant level.



We can further exemplify the method for the heteronuclear 

diatomic, for which 

In this case we can use the following identifications:

The determinant becomes:
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To express the solutions in compact form we introduce the 

trigonometric representation:

In this case the energies are:

The wave functions are:
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These approximate models for formation of bonding 

interactions can be applied to appropriate valence atomic 

orbitals on each center.  We can approximate the energy of 

the electron each center ai by the ionization potential of the 

electron in that orbital. This is an application of Koopman's

theorem.  Koopman's theorem states that the energy of an 

orbital is approximately equal to the ionization energy of an 

electron in that MO. This is a convenient approximation 

since it permits the use of X-ray photoelectron 

spectroscopy to measure the electron energies of both 

valence and core MOs.
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The resonance energy that appears in the above equations can 

be estimated using semi-empirical theories, which are 

described in the next chapter. For example, we can consider 

bonding in HF. From the previous section we have seen that 

bonding H2 and F2 can be considered by arise from two 1s and 

two 2 pz orbitals, respectively.  Thus, bonding in HF arises from 

the interaction of a 1s and a 2pz orbital.  We have the following 

initial values,
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Thus, 

and 

. The energies are 

The net stabilization in the bonding orbital is 0.7 eV.  The wave 

functions are

Heteronuclear diatomic



Potential energy surfaces



Spectroscopic transitions

• Energy is sum of electronic, vibrational and 

rotational.

• The observed transitions are expressed as

• Te is the electronic energy and G(v) is the 

vibrational energy (see next page)

• The vibrational energies include anharmonicity.



Terminology for diatomic
spectroscopy

• In Herzberg and in the literature on diatomic 

molecules one prime (‘) represents the excited state 

and two primes (‘’) represents the ground state.  

• Te designates the electronic energy at the equilibrium 

bond length.  Te’’ = 0 for the ground state by 

definition.  

• ne designates the transition energy Te’ – Te’’. 

• G(v) represents the vibrational energy above Te.

• we represents the vibrational frequency

• wexe represents the anharmonicity constant.



Birge-Sponer Extrapolation


