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Approximate Methods

The major distinction in approximate quantum theory is 
between perturbation theory and the variational principle. 
These two methods of approximation are complementary and 
are used both separately and in combination to solve the 
most complex problems. 

The philosophy of the variational principle is to use the 
derivative of the energy with respect to a parameter in an 
approximate wave function. Such parameters are known as 
variational parameters. 

Examples include the magnitude of the exponent (usually 
called z) in a modified (screened) exponential function . 
The coefficients of molecular orbitals are also variational
parameters. 



Overview of Perturbation Theory

Perturbation theory is based on the idea that a systematic 
modification of wave functions and energies is possible 
using a prescription that can be different orders. 
We can speak of first order, second order and higher order 
perturbation theory, up to infinite order. The philosophy of 
this method is based on the idea that there are stages of 
correction possible based on an expansion of the wave 
function in powers of a variational parameter, usually called l.



Perturbation Theory

We will be interested in the effect on molecules of weak 

interactions such as electric or magnetic fields.  Moreover,

Almost any process that is considered forbidden in quantum 

mechanics can be observed due to some higher order effect.

In all of these cases we treat the effect of a small perturbation

on the system using Perturbation Theory. 

The hamiltonian H(0) is modified by a perturbative term H(1) :

We assume that we know the zero-order (0) eigenfunctions

and energies:



Perturbed Energy and 

Wave Function
The lamda, l is just a number.  It can be used to “turn on” the

Perturbation.  If l = 0 then the perturbation is not present.

If l = 1 then the perturbation is present.  This method is 

convenient so we can keep track of any changes.  We can

Also consider various orders or perturbation, first order, l,

second order, l2 etc.

We say the Y(1) is first order correction to the wave function.

Similarly, the energies can be written:

Convergence requires the E(1) << E(0) etc.



Perturbed Energy and 

Wave Function
If the states are not degenerate then we find that:

The perturbed wave function is composed of a linear 

combination of terms derived from the zero-order wave 

function. 

The prerequisite for the existence of a perturbed wave

function is that the matrix elements <Yj|H’|Yi> are not zero.



Collecting terms in the various order l, l2…, the equation in l

is

Which we can write as

Starting with a general case for a perturbed Schrodinger 

equation: 

We can substitute in the definitions to first order

and expand:



If we left-multiply by          we have 

Where we can use the property of the Schrodinger equation 

solutions

If i = j, then the left-hand side is zero and the first order correction 

in the energy can be obtained as,

For 



To find         we expand in a complete set of orthonormal

unperturbed wave functions.

where

Then we can see that 

and 

We can write down the perturbed wave function in terms of 

the zero order wave functions,



The Anharmonic Oscillator
An example of application of perturbation theory

The energy can be written as the zero-order energy and the

first order correction

We must first find the zero-order wave functions. This just

means we find the wave functions for the unperturbed solution

to the Hamiltonian.

The lowest solution is:

Note that the term zero-order does not mean that v must be 0.



Definition of a perturbation

Clearly we understand that in this case the zero-order 

Hamiltonian is

We can define the perturbation as the cubic and quartic terms

That lead to a correction of the potential energy surface

The first order correction to the energy is:



or

For the v = 0 level we have:

Which gives the correction to the energy as:

First order correction to v = 0



For the v = 1 level we have:

The wave function is

And the integral we need to solve is:

Once again the cubic term vanishes:

First order correction to v = 1



A note on perturbation order

The solution is:

Note that the cubic term will always vanish to first order. 

This is because any vibrational wave function times itself 

gives an even function. The product of an even function with

cubic function is odd and this integral vanishes over even

limits.  If we want to obtain a cubic correction, we must take

perturbation theory to second order.



E0 = 1/2hn

E1 = 3/2hn

Zeroth Order Energies



g = -0.1a

DE1 = 5g/64a2

DE0 = g/32a2

In this example the anharmonic correction is a little more than 1%

First Order Corrections



Second order perturbation theory is conceptually an extension 

of the methods used to obtain the first order correction. There 

are numerous instances where the second order correction is 

needed. For example, the first order correction may be zero.  

We will show a concrete example using the perturbation theory 

correction to the harmonic oscillator.  The second order 

perturbation theory result is also important in calculation of 

magnetic superexchange, molecular polarizability and other 

problems that involve long-range coupling of electrons.

From this point forward the shorthand braket notation 

will be used. Thus,

Up to and including the second order correction, the energy is

Second Order Corrections



In general, the correction to the wave function is more 

significantly more involved than the energy. It is not always

needed.  The second order wave function correction is used

for many applications:

Second Order Wave Function



For heave atoms electron motion is sufficiently rapid that one 

should consider the relativistic kinetic energy,

We can rewrite the relativistic kinetic energy as,

and apply a Taylor's series

Relativistic correction



To obtain the zero order kinetic energy and series of relativistic 

corrections.

The different orders are shown as follows

The relative magnitude of the first order correction to the zero 

order energy is

This correction is of the order of 2 x 10-5. For this reason we will 
consider the first order correction K(1) , but not the second order 
correction, K(2).

. 

Kinetic energy operator



According to first order perturbation theory the energy 

correction is

From the equation above we find that we can write the first 

order energy as

This permits us to write the first order correction to the kinetic 

energy as the square of the zero order kinetic energy.

We can conveniently use the definition of the hamiltonian to 

write this further as



There are three terms in the expansion of the operator:

The cross term is:

Here we have used the virial theorem, which tells us that

The final term is 

We do not show the integration here, but it can be found in 

many quantum mechanics textbooks.

Relativistic correction



Combining the three terms we find that 

Although the relativistic correction is small for hydrogen and 

other light elements, it becomes significant for heavier 

elements. We find that the relativistic hamiltonian should be 

used for second and third row transition elements, 

lanthanides and actinides.

Relativistic correction



The spin-orbit operator is

The spin magnetic moment arises in the frame of reference of 

the electron due to the relative motion of the proton. Thus, 
Bp arises as the result of a Biot-Savart current produced by 

the proton as the electron moves around it. The spin-orbit 

hamiltonian depends on both S and L.

The total angular momentum is

While neither L nor S commutes with  L.S

Spin-orbit coupling



The total angular momentum J commutes with L.S

.

The two commutators [L.S,S] and [L.S,L] cancel since in 

general

and therefore the same is true of L x S and S x L.

Since neither S nor L commute with L.S then they change in

time.

This is expression is conveniently used to evaluate 
.

Spin-orbit coupling

-



This is a very useful expression that permits evaluation of the 

coupling of two angular momenta. Thus, to evaluate 

we can use this expression combined with the expectation 

value of 1/r3.

From the first order perturbation theory we have

The final result is

Spin-orbit coupling



We have used the fact that s = 1/2 so that s(s+1) = 3/4. There 

is a combined correction that involves both the relativistic and 

spin-orbit contributions.  The combined result is known as the 

fine structure correction to the energy.  The fine structure 

correction is

Spin-orbit coupling



The Variation Method

The variational theorem

The He atom



The variational theorem
The variation method allows us to obtain an approximation 

to the ground state energy of the system without solving 

the Schrödinger equation.

The variation method is based on the following theorem: 

Given a system with hamiltonian operator H, then if f is 

any normalized well-behaved function that satisfies the 

boundary conditions it is true that

where E0 is the true value of the lowest energy eigenvalue

of H. This important theorem allows us to calculate an 

upper bound for  the ground state energy.



Practical significance

The variation method serves as the basis for all methods 

that use combinations of hydrogen-like orbitals to solve for 

the eigenfunctions (wave functions) and eigenvalues (energies) 

of atoms and molecules.

The radial part of the hydrogen-like wave functions is modified 

by a variational parameter, which is minimized.  The theorem 

allows us to set the derivative with respect to any parameter a

equal to zero to  find the value of that parameter that minimizes 

the energy:

We can be sure that the energy calculated in this way will be 

greater than the true energy (an upper bound).



The electronic hamiltonian for the hydrogen atom consists of a 

kinetic energy term for the electron and the Coulomb attraction

of the electron and proton (nucleus).

Of course, the nuclear charge of hydrogen is Z = 1 so the

Z is included for completeness.  We know that the solutions

Of the Schrödinger equation (HY = EY) gives energy levels:

n is the principal quantum number.

a0 is the Bohr radius.

The hamiltonian for H
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For helium the same kinetic energy and Coulomb attraction

terms are present, but there is also a Coulomb repulsion 

between the two electrons that must be included.

Because of the Coulomb repulsion there is no exact solution 

for He.  To solve the problem we use two 1s orbitals from the 

solution for hydrogen and then apply the variational method.

The hamiltonian for He
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The hydrogen 1s wave functions for electrons 1 and 2 are:  

The aufbau approach for atoms assumes that the total wave

function for a many-electron atom is just a product of one

electron wave functions.  In the present case:

Note that the hydrogen wave functions are normalized so:

The He wave function

f1
*
f1d = f2

*
f2d = 1



Variational approach for the He atom

The He wave function used for the variation method is a 

product of two hydrogen 1s orbitals. However, instead of 

the nuclear charge Z we use a variational parameter z.  

z has a physical interpretation.  Since one electron tends to

screen the other from the nucleus, each electron is subject to

a nuclear charge that is less than Z.

The hamiltonian is:
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Evaluation of the integrals

If we consider only the part of the hamiltonian in parentheses 

We have the solution to a hydrogen atom with two electrons 

in the 1s orbital.

where the right hand side is twice the energy of a 1s electron.  

Using this result we have:

The integrals have the following values:
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Evaluation of the variational parameter z

We have:

We now vary z to minimize the variational integral:

The variational energy is:
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The variational energy: 

comparison with experiment

The experimental ionization energy of He is –24.5 eV.

Our first guess would be to calculate the energy of the 1s 

Electron in He using the hydrogen energy level with a nuclear 

charge Z = 2, E = -Ze2/a0.  

This gives - 2(13.6) eV = -27.2 eV.

Using the value obtained by the variational method we have,

E = -(27/16)e2/a0 = -(27/16)(13.6) eV = -22.95 eV. 

The value is much closer to the true value.  In accord with 

the  variational theorem, the true ground state energy is less 

than that given by variational method.



Summary for the variational

principle

The hydrogen atom is the only atom with an exact solution.

Hydrogen wave functions are used as the approximation

for atomic wave functions in multielectron atoms.

The variational principle states that any wave function we 

choose that satisfies the Schrödinger equation will give

an energy greater than the true energy of the system.

The variation method provides a general prescription for

improving on any wave function with a parameter by 

minimizing that function with respect to the parameter.


