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Classical Vibration of a Diatomic

As was the case for rotation, we can consider a simple

model of a mass on a spring attached to a wall of infinite

mass and a diatomic molecule as two simple examples.
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Classical approach to 

vibration
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Classical vibrational motion
• A particle undergoes harmonic motion if it experiences a 

restoring force that is proportional to its displacement, x.

• F = -kQ (k is a force constant) 

• F = -dV/dQ and V = 1/2kQ2.

• The classical harmonic oscillator can also be written as:

• Solutions have the form of Q(t)= cos(wt).

• These solutions imply that

• Reduced mass is

w = k
m



Classical potential function

• The potential is V = 1/2kQ2, which is a parabolic function.

• This potential is called a harmonic potential. 

• The force constant k has units of Newtons/meter (N/m) or 
Joules/meter2 (J/m2).

• The angular frequency w = 2pn, n is the frequency in Hz.



Quantum approach to the 

vibrational harmonic oscillator

Solution is Gaussian

Energy is quantized
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We can use a harmonic potential in the Schrödinger equation to 

calculate the wave functions and energies of the vibrations of 

molecules.

Making the definitions,

Noting that 

we can write the equation as



One approach to solving such an equation is to find an 

asymptotic solution g(y) assuming that e ~ 0. Then, we can 

assume that the true solution is the product of g(y) and a function 

f(y). The asymptotic solution is:

f(y) can be a series expansion that will give different solutions 

for various values of e. A Gaussian function is an appropriate 

trial solution for the this equation,

For large values of y we have

Thus, our trial solution for the general equation is



In order to substitute this equation we need the derivatives. 

We have

and

Substituting this into the above equation gives us 

Substitution of the trial solution



If we assume that f(y) has the form of a series

Then the derivatives are

Frobenius series



Once we choose a value for e there is one and only one 

sequence of coefficients, an that defines the function f(y). 

Therefore, the sum can be zero for all values of y if and only if 

the coefficient of each power of 

And y vanishes separately. Thus,

Series solution of the equation



Rather than finding an infinite series (which would actually be 

divergent in this case!) we will assume that the solution is a 

polynomial that terminates after a finite number of terms, n.  

The condition for the series to terminate is 

which implies

or

Therefore, from the above we have

Energies of the quantum oscillator



Using the definition of a, the solutions have the form:

Wave functions of the 

quantum harmonic oscillator



Vibrational wavefunctions

and energies
• Energy levels are given 

by Ev = (v +1/2)hw

• Typical energies are of 

the order of 0 - 3200 cm-1

• Wavefunctions are            

v = NvHve
-y2/2 where Hv

is the Hermite polynomial

You should know the energy level formula and be

able to sketch the wave functions on the potential surface.



Solutions to harmonic oscillator

Hv(y) = (–1)
v
ey 2 d

dy
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e–y 2

The Hermite polynomials are derivatives of a 

Gaussian, y = a1/2Q

v Hv(y)
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The normalization constant is
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This information is provided for  completeness.  

It is not an exam topic.



The bonding electronic state 

gives rise to a potential energy 

surface for the nuclear motion
The probability is 

shown in the figure.

Solutions are

Gaussians multiplied

by polynomial functions.

2



There is a potential energy 

surface that corresponds to each 

electronic state of the molecule

The shift in the nuclear

displacement arises from

the fact that the bond

length increases in the

s* state compared to the

s state.  We will show that

the overlap of the vibra-

-tional wave functions is

key to understanding the

shape of absorption bands.



The zero point energy

• The lowest level is E0 = 1/2hw

• The lowest vibrational level is not zero in energy.

• This is consistent with the uncertainty principle.  If 

atoms were completely still at absolute zero then we 

would know both their position and moment to arbitrary 

accuracy.

• The width of the wavefunction is related to positional 

uncertainty of an atom.

• We call E0 the zero point energy.



Polyatomic Molecules

• There are 3N total degrees of freedom in a 

molecule that contains N atoms.

• There are three translational degrees of freedom. 

These correspond to motion of the center of mass 

of the molecule.

• In a linear molecule there are two rotational 

degrees of freedom. In a non-linear molecule there 

are 3 rotational degrees of freedom.

• The remaining degrees of freedom are vibrational.



There are 3N-6 vibrational degrees of 

freedom in a molecule with N atoms

Three degrees of freedom are required for translation.

Three degrees of freedom are required for rotation.

For example, in H2O there are 9 total degrees of freedom

and 3 vibrational degrees of freedom.

In C6H6 there are 36 degrees of freedom and 30 vibrational

degrees of freedom.

Exception: In linear molecules there are only 2 rotational

degrees of freedom and therefore the number of vibrations

is 3N - 5.



The vibrational degrees of freedom 

can be expressed as normal 

modes.

All normal modes have the same form for the harmonic

oscillator wavefunction and differ only in the force

constant k and mass m.  

The total wavefunction is a product of normal modes.  

The total nuclear wavefunction for water is 123.

The normal mode wavefunctions of water correspond

to the symmetric stretch, bend, and asymmetric stretch.

These are linear combinations of the stretching and 

bending internal coordinates of H2O.



Normal Modes of Vibration

Polyatomic molecules can be considered as a set of coupled 

harmonic oscillators.  Although this is a classical model we 

shall see that it can used to interpret spectra using the 

quantum-mechanical harmonic oscillator wave functions.  

The collective motions of the atoms in a molecule are 

decomposed into normal modes of vibration within the 

harmonic approximation.  The normal modes are mutually 

orthogonal. That is they represent linearly independent 

motions of the nuclei about the center-of-mass of the 

molecule.  



Cartesian equations of motion

T is the kinetic energy and V is the potential energy

expressed as a Taylor’s series in x, y and z.
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Mass-weighted coordinates

The equations of motion are:

T = 1
2

 i
2

i = 1

3N

V = 1
2

aij i j
i, j = 1

3N

 1 = m1 x1 ,  2 = m1 y 1 ,  3 = m1 z1 , ... 3N = mN zN

a ij = V
 i j

 i + aij j
j = 1

3N

= 0



Solutions
Trial solutions have the form:

 i =  i
0sin  t + 

 i =  i
0cos  t + 

 i = –  i
0sin  t + 

–  i
0 + aij j

0
j = 1

3N

= 0

These give a linear system of coupled equations:

A – I 0 = 0

Which is equivalent to the matrix equation:

A is the matrix of coefficients. I is the identity matrix.

 are the eigevalues.



Diagonalization of the matrix
The general form of the matrix equations is

There is a trivial solution in which all of the terms in the 0

column vector are zero.  The interesting solution, however, 

is the solution for which the determinant of the matrix |A - I| 

is equal to zero.

a11 a12 a13...
a21 a22 a23...
a31 a32 a33...

...
–

1 0 0...
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0 0 3...
...
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..
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2
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a21 a22 a23...
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 

 

 
..



Definition of normal coordinates
In fact, the procedure of finding det |A - I| is a matrix 

diagonalization of A.  To perform this diagonalization we 

transform to normal coordinates Qi where:

In matrix form Q = LT, which can also be written:

L is a unitary matrix; its inverse is equal to its transpose 

L-1 = LT.  The matrix L will diagonalize A.

Qi = lki k
k = 1

3N

Q

Q

Q
.

=

l11 l21 l31...

l12 l22 l32...

l13 l23 l33...
...

 1

 2

 
..

L
T
AL =  =

1 0 0...

0 2 0...

0 0 3...
...

The Q are normal

coordinates



Diagonalization of the matrix
The eigenvalues are

The kinetic energy is:

The uncoupled equations of motion are now represented by

These solutions represent collective motions of the nuclei.

Each Q contains simultaneous displacements of many 

nuclei.
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Internal Coordinates

Cartesian coordinates are less convenient than a 

coordinate system defined in terms of the bonds, angles, 

etc. of the molecule.  Such a coordinate system is called 

an internal coordinate system.  Only motions relative to the 

center-of-mass are included and thus there are 3N - 6 

internal coordinates for a non-linear polyatomic with N 

atoms.  For linear polyatomic molecules there are 3N - 5 

internal coordinates.  The internal coordinates are

Stretch Dr

Bend Dq

Torsion Dt

4 Wag Dw   



Example: CO2

For example, for CO2 we have the following internal 

coordinates.

R =

Dr 1

Dr 2

Dq1

Dq2

Dr1 Dr2

Dq1

Dq2



Example: CO2

For example, for CO2 we have the following internal 

coordinates.

V = 1
2

k rDr 1
2 + k rDr 2

2 + k qDq1

2 + k qDq2

2 + k rqDr 1Dq1 +

1
2

k rqDr 2Dq1 + k rqDr 2Dq2 + k rqDr 1Dq2+ k rrDr 1Dr 2 + ...

2T = T  R
T

BB
T – 1

R = R
T
G

– 1
R

det FG – I = 0



Normal modes - CO2

Symmetric stretch
(infrared inactive)

Asymmetric stretch

   n3 2349 cm
-1       Bends

  n2 667 cm
-1

.+.

(infrared active)

There are 4 normal modes (3N - 5).  Three of them 

are infrared active since they show a dipole moment 

change in their motion.

Symmetric stretch

n1 2289 cm-1

(Raman active)

Asymmetric stretch

n3 2349 cm-1

(IR active)

Bends

n2 667 cm-1

Asymmetric stretch

n3 2349 cm-1

(IR active)

(IR active)  



Normal modes - water

Symmetric stretch

   n1 3650 cm-1
Asymmetric stretch

   n3 3750 cm-1
      Bend

  n2 1600 cm-1

There are 3 normal modes (3N - 6).  All of them are 

infrared active since all show a dipole moment 

change in their motion.  The harmonic approximation

can be applied to each normal mode.

Symmetric Stretch

n1 3825 cm-1

Asymmetric Stretch

n3 3935 cm-1

Bend

n2 1654 cm-1



Vibrational

Transitions



The Dipole Moment Expansion

The permanent dipole moment of a molecule

oscillates about an equilibrium value as the

molecule vibrates.  Thus, the dipole moment

depends on the nuclear coordinate Q.

where m is the dipole operator.

m Q = m0 +
m

Q
Q + ...



The Dipole Moment Expansion

The permanent dipole moment of a molecule

oscillates about an equilibrium value as the

molecule vibrates.  Thus, the dipole moment

depends on the nuclear coordinate Q.

where m is the dipole operator.

m Q = m0 +
m

Q
Q + ...



Vibrational transitions

Note that this result is a statement of the 

vibrational selection rule.  Within the harmonic

approximation transitions can only occur 

between states separated by one quantum 

number (Dv = 1 or Dv = -1).

This general rule can be seen by considering

integrals of the type shown in the previous 

slide.



Transition dipoles

In order for infrared light to be absorbed the 

polarization must be aligned with the direction

of the transition moment.  For a vibrational mode

this is determined by the directional change in

the dipole moment.  This is shown below for

the bending mode of H2O.

H

O

H H

O

H



Transition dipoles

The change in ground state dipole moment

during vibration interacts with light.

The first term is static and does not contribute

to the transition.  Calling the vibrational wave-

functions i the transition moment is:  

m = mg +
mg

Q
Q +

m10 =
mg

Q
1Q0dQ



Dipole derivatives

The vibrational wavefunctions i are Gaussians,

thus the transition moment for transition from

vibrational state 0 to vibrational state 1 is

calculated on the next slide. 

The transition dipole moment is proportional to

the dipole derivative.  This is true for any 

normal mode of vibration (i.e. harmonic).



Vibrational transitions

Vibrational transitions arise because of the 

oscillation of the molecule about its 

equilibrium bond configuration.  As the 

molecule oscillates infrared radiation can 

interact to alter the quantum state.

Mvib =
m

Q
v + 1

* QvdQ
– 



m Q = m0 +
m

Q
Q + ...



Mathematical note

Gaussian integrals have the solutions:

A Gaussian times an odd polynomial has a

value of zero over the even limits of –infinity to

infinity.

The even polynomials time Gaussians are not

zero.



Mathematical note

For example,

If we multiply any two adjacent vibrational

wave functions we obtain an odd function.

Therefore, the integral of this product is zero.

We call this property orthogonality and we

say that the wave functions are orthogonal.



Mathematical note

For example,

We can see this by plugging in the wave 

functions.

However, if radiation can couple into the 

Vibrations by the term



Mathematical note

We have instead that

We can see this by plugging in the wave 

functions that

The result is an even function times a Gaussian,

which is not zero. Let’s investigate.



Vibrational transitions

As an example we can calculate the transition

moment between the state v = 0 and v = 1.

0 = a
p

1/4

e– aQ2/2 , 1 = a
p

1/4

2aQe– aQ2/2

Mvib =
m

Q
a
p

1/2

2a e– aQ2/2Q
2
e– aQ2/2dQ

– 



=
m

Q
a
p

1/2

2a p
2a3/2

=
m

Q
1
2a



Vibrational transitions

Note that this result is a statement of the 

vibrational selection rule.  Within the harmonic

approximation transitions can only occur 

between states separated by one quantum 

number (Dv = 1 or Dv = -1).

This general rule can be seen by considering

integrals of the type shown in the previous 

slide.



Vibrational Transition



Vibrational Transition



v’ = v + 1

v’ = v - 1

v = 0

v = 1

v = 2

Q

Vibrational Selection Rule



Comparison of harmonic and 

anharmonic potentials



Overtones of water

n1 symmetric stretch 3825 cm
-1

n2 bend 1654 cm
-1

n3 asymmetric stretch 3935 cm
-1

Even in water vapor

n1  n3, but symmetries

are different, G1  G3.

However, the third overtone

of mode 1 has the same 

symmetry as the combination 

band

G1 G1 G1 = G1 G3 G3 .

Strong anharmonic coupling

leads to strong overtones

at 11,032 and 10,613 cm-1.

These intense bands give

water and ice their blue color.



Frequency shift due to 

molecular interactions
Hydrogen bonding lowers O-H force constant

and H-O-H bending force constant.

vapor  liquid

n1 3825  3657

n2 1654  1595

n3 3935  3756


