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Postulate 1. Any state of a system of N particles can be 

described by a wave function Y.

Corollary 1.1: the probability density of the particles in the 

system is defined as Y*Y. The wave function, Y, must be 

continuous and differentiable.  The function must single valued. 

Finally, the square of the wave function, defined as Y*Y, must 

integrable. These mathematical requirements are needed to 

ensure that the wave function is smooth and lacks 

discontinuities that would be physical unreasonable descriptions 

of the particle/waves in the system. The idea that the probability 

density must integrable arises since the probability is calculated 

by

where the differential volume element, dt, is relevant to the 

space being considered. 



Corollary 1.2: A meaningful probability in quantum mechanics 

can only be calculated if the wave function is properly normalized.  

The normalization condition states that the probability of binding 

the particle in all of the relevant space is equal 1. 

The limits of the integral need to be set according to the system 

so that the encompass all of the space that the particle/wave may 

occupy. We will show a practical method to normalize a wave 

function so that this condition can always be met.



Postulate 2. Every observable property of a system has a 

corresponding linear Hermitian operator.  Since wave 

functions can be complex and physical properties are calculated 

by an operator equation, it is important that the operator always 

give a real eigenvalue. The value of the energy, momentum etc. 

cannot be complex. The Hermitian property of the operator 

guarantees that the observable will be real. 

Postulate 3. If the operator     corresponds to an observable for 

a set of identical systems in state and y is an eigenfunction of     

with eigenvalue a, such that, 

then, a series of measurements on different members of the 

set always leads to the value a.



Postulate 4. If the operator      corresponds to an observable for 

a set of identical systems in state and yi is an not eigenfunction of 

then the average of a series of measurements on different 

members of the set is given by

This quantity is the average value of b, and it is also known 

as the expectation value.

Postulate 5. The state function y(t) evolves with time as

The time dependent wave function compatible with this 

definition is:

where the stationary wave function, y, is a solution of the 

equation



The quantum mechanical momentum operator can be 

derived from the energy operator.  Since

We can conclude that 

Postulate 6: the eigenvalues of two operators will be 

simultaneously measurable to any accuracy if those operators 

commute.  We define the commutator as:

Definition of Commutator



In order to determine whether two operators commute we usually 

need to operate on a test function, which is an eigenfunction of 

the operators.  For example, the wave function,

is an eigenfunction of the momentum.  We can see this since

There is also a test function for the time-dependent operator

introduced in posulate 5, 

such that

Definition of a test function



We now ask whether the energy and momentum are 

simultaneously measurable.  If the operators commute, then we 

can say that energy and momentum can be measured 

simultaneously to arbitrary accuracy (i.e. to the best possible 

accuracy under experimental conditions).

If we factor out the constants we find that

From this reasoning we see that the momentum and energy are 

simultaneously measurable in a quantum mechanical system.  

H and p commute



Now we consider momentum, p, and position, x. The 

commutator is,

In this case we see that we must apply the product rule to the first 

term,

The second term is

Two of the terms cancel and we have 

p and x do not commute



A similar relationship holds for energy and time. To see 

this we define the time-dependent energy Hamiltonian as using 

the equation

One solution to this equation is

The mathematical solution of the time-energy commutator is 

entirely analogous to the position-momentum commutator.

Once again two of the terms cancel and we have 

E and t do not commute



The momentum and position do not commute. This is also a 

statement of the Uncertainty Principle. The position and 

momentum of particle are not simultaneously measurable 

with arbitrary accuracy.  Instead, there is a limitation on how 

accurately we can measure both the position and momentum 

simultaneously.

A similar comment holds for energy and time. We can see the

Precise (mathematical) analogy in the form of the 

commutators for these two quantities.  They both have the 

same form.

Significance of commutator

for [p,x] and [E,t]



Planck-Einstein definition 

of a photon

A photon is a particle of electromagnetic 

radiation.   It is also called a “wave packet”.

The energy of a photon is:

E = hn
We can also express this as:

E = hc/l



Wave equation implies particle

Energy:

Momentum:

The only exception is a photon since it has

no rest mass.



Photon energy-momentum 

relation

Energy:

Momentum:

The DeBroglie relation works for all particles

including the photon (with zero mass).



The Schrödinger equation 

for a free particle

The solutions are:

eikx

e-ikx



The particle in a box problem

Imagine that a particle is confined to a region of space.
The only motion possible is translation. The particle has
only kinetic energy. While this problem seems artificial at
first glance it works very well to describe translational 
motion in quantum mechanics.

0

 
LAllowed Region



The solution to the Schrödinger 
equation with boundary conditions

Suppose a particle is confined to a space of length L.
On either side there is a potential that is infinitely large.
The particle has zero probability of being found at the 
boundary or outside the boundary.

0

 
LAllowed Region



The boundary conditions determine 

the values for the constants A and B

sin will vanish at 0 since x = 0 and sin 0 = 0.

sin will vanish at a if kL = np.

Therefore, k = np/L.

Y = sin npx
LNot

Normalized !



The particle in a box has 

boundary conditions

Y(0)= 0 Y(L)= 0

L



The solution to the Schrödinger 
equation with boundary conditions

The boundary condition is that the wave function will
be zero at x = 0 and at x = L.

From this condition we see that B must be zero.
This condition does not specify A or k.
The second condition is:

From this condition we see that kL = np.  The conditions
so far do not say anything about A.  Thus, the solution
for the bound state is:

Note that n is a quantum number!

Y(0) = Asin(k0) + Bcos(k0) = 0

Y(L) = Asin(kL) = 0  or kL = arcsin(0)

Yn(x) = Asin(npx/L) 



The solutions to the particle in a box
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The appearance of the wave functions

Note that the wave functions have
nodes (i.e. the locations where they
cross zero).  The number of nodes is
n-1 where n is the quantum number
for the wave function. The appearance
of nodes is a general feature of 
solutions of the wave equation in bound states.  By bound
states we mean states that are in a potential such as the
particle trapped in a box with infinite potential walls.  We
will see nodes in the vibrational and rotational wave functions
and in the solutions to the hydrogen atom (and all atoms). 
Note that the wave functions are orthogonal to one another.
This means that the integrated product of any two of these 
functions is zero.



The probability interpretation

The wave function is related to the probability for finding
a particle in a given region of space.  The relationship is
given by:

If we integrate the square of the wave function over a 
given volume we find the probability that the particle is
in that volume.  In order for this to be true the integral
over all space must be one.

If this equation holds then we say that the wave function
is normalized.

P = Y
2dV

1 = Y
2dV

all space



The normalized bound state 
wave function

For the wave function we have been considering, 
all space is from 0 to L.  So the normalization constant A
can be determined from the integral:

The solution to the integral is available on the 
downloadable MAPLE worksheet.  The solution is just L/2.
Thus, we have:

As you can see the so-called normalization constant has
been determined.

1 = Y
2dx

0

L

= A2
sin npx

L

2

dx
0

L

= A2
sin npx

L

2

dx
0

L

1 = A2L
2

, A2
= 2

L
, A = 2

L



The probability of finding the
particle in a given region of space

Using the normalized wave function 

one can calculate the probability of finding the particle 
in any region of space.  Since the wave function is 
normalized, the probability P is a number between 0 and 1.
For example: What is the probability that the particle is
between 0.2L and 0.4L.  This is found by integrating over
this region using the normalized wave function (see MAPLE 
worksheet).

Y x = 2
L

sin npx
L

P = Y x
2
dx

0.2L

0.4L

= 2
L

sin npx
L

2

dx
0.2L

0.4L

 0.25



The appearance of the probability Y2



The uncertainty principle

When we measure the properties of very small particles, we
cannot help but affect them.  The very act of measuring 
causes a change in the particle’s properties.  Therefore, the 
description of the the measurement is a probability rather 
than a fixed value.  We have seen the Born interpretation of 
the square of the wavefunction as a probability density.
The consequence of this is that certain variables are linked
By the uncertainty that is inherent in the measurement.
Position and momentum are two such conjugate variables.
Note that the units of position is the reciprocal of the 
momentum (if we factor out Planck’s constant).
x has units of meter, k has units of meter-1

Momentum is p = hk.
t has units of time, n has units of time -1

Energy is E = hw.



Where is the particle in the box?

Since we are using a probability function we do not really 
know exactly where the particle is.  We know that the highest
probability occurs for the position L/2.  We can guess that 
this is the average position in the box.  However, the
more precisely we specify the location of the particle the
less information we have about how fast the particle is
moving.  This is a statement of the famous Uncertainty 
Principle.  

DxDp > h/2

Let’s look at the Uncertainty Principle using the particle-in-
a-box example.  If we know that the particle is in the lowest
level then Uncertainty in its position is approximately equal
to the width of the probability distribution.



The location of a particle in free 
space is not defined



Consider a superposition of a wave
with moment hk and h(1.1k)



The sum has a characteristic envelope
frequency at (w2 - w1)/2

Envelope



The sum has a characteristic beat
frequency at (w2 + w1)/2

Beats



As we add more frequencies we
can speak of a bandwidth Dk

Dk = 0.1

3 added cosines



Dk = 0.2

As the bandwidth increases the
position in x-space becomes more defined

5 added cosines



The superposition of waves in space
leads to the description of a location

Dk = 0.7

15 added cosines



Relevance of the example

Although the function used in the example is periodic it is
relevant.  Since in a given region of space (i.e. where a 
measurement can be made) the probability of observing 
the particle in a given region of space is dependent upon
the number of contributing waves.  If more waves 
contribute then the momentum of the particle is less
certain.  Thus, the we can know that moment precisely if
we are totally uncertain of the position.  As we begin to 
specify the position more precisely we find that the 
momentum is less well known.  Since p = hk, we can 
also express this condition as:

DxDk > 1/2



Fourier transform related pairs

Position and momentum are related by a Fourier 
transform.

x            p
Time and energy are related by a Fourier transform.

t             E

There is an uncertainty relationship for both of these 
related pairs.  Thus, for time and energy we have

Dt DE > h/2

as well.  These pairs can be related by a probability 
function that gives the width of the distribution in each
space.  Gaussian functions are particularly useful since
the Fourier transform of a Gaussian is also a Gaussian.



Gaussian Functions
A Gaussian function has the form exp{ -a(x – x0)

2 }.
The Gaussian indicated is centered about the point x0.
The Fourier transform of a Gaussian in x-space is a 
Gaussian in k-space.  Since p = hk we also call this 
momentum space.  The figure shows the inverse 
relationship.

x k



Applications of particle in a box

and “free electron” solutions



Free electron model 

for electronic spectra

Before the advent of computers, models such as 

particle-in-a-box were used for linear polyenes.  

The idea of such a model is that the electrons 

from the p-orbitals in a molecule 

are particles and the molecule 

is the “box”.  For example, we 

can think of ethylene as a short 

box with two electrons as shown 

in the figure.  Although there are 

an infinite number of states, only 

two of them are really important 

in ethene since there are only two electrons.  The 

HOMO and LUMO are shown on the left and the 

representation of the two lowest electronic states is shown.



Polyenes

The first four members of the 

class of polyenes are shown.

We can treat the p-system of 

these molecules using the model

with 2, 4, 6 and 8 electrons,

respectively.  As a general rule

the model can be applied to any

number of p-orbitals, with the assumption each p-orbital will

contribute one electron to the total.  Then we populate the

levels calculated using the particle-in-a-box and determine

the transition between the HOMO and LUMO.  This is

illustrated for butadiene on the next slide.



A B C



Application to aromatic 

molecules: benzene
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We can construct molecular 

orbitals of benzene using the 

six electrons in p orbitals

Benzene Structure Electronic Energy Levels

C

C

C

C

C

C

H

H

H

H

H

H

Electrons are

spin-paired



The Free Electron Model Applied to 
Benzene

The p system approximates circular 
electron path.
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The Perimeter Model

The aromatic ring has 18 electrons.
The p system approximates circular 
electron path.

N N

NN
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Porphine orbitals

eg eg

a2u a1u



Nodes in Porphine orbitals



The four orbital model is used to 
represent the highest occupied and 

lowest unoccupied MOs of porphyrins

eg p
*

a1u pa2u p

The two highest occupied
orbitals (a1u,a2u) are nearly 
equal  in energy.  The eg

orbitals are equal in energy.
Transitions occur from:

a1u eg and a2u  eg.

M1



The transitions from ground state p orbitals
a1u and a2u to excited state p* orbitals eg

can mix by configuration interaction

eg p
*

a1u pa2u p

Two electronic transitions
are observed.  One is very
strong (B or Soret) and the 
other is weak (Q).
The transition moments are:
MB = M1 + M2

MQ = M1 - M2  0

M1 M2



Absorption spectra for MbCO and deoxy Mb
Soret Band Q Band

The spectrum of the heme has two bands. The B band or Soret

Band is allowed and therefore intense.  The Q band is forbidden.

It is observed because of vibronic coupling with the Soret band.



Quantum confinement in nanoparticles:
An example of particle-in-a-box

The semi-conductor band gap energy can depend on size. 



Quantum dots are semi-conductor
nanoparticles whose color depends on size



Free electron model of a 
conductor is widely used


