
Free energy dependence 
along the coexistence curve 

In a system where two phases (e.g. liquid and gas) are in 
equilibrium the Gibbs energy is G = 𝐺𝐺ℓ + 𝐺𝐺𝑔𝑔, where 
𝐺𝐺ℓand 𝐺𝐺𝑔𝑔 are the Gibbs energies of the liquid phase and the 
gas phase, respectively.  If dn moles (a differential amount 
of n the number of moles) are transferred from one phase to 
another at constant temperature and pressure, the differential 
Gibbs energy for the process is:
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The rate of change of free energy with number of moles is
called the chemical potential.



Free energy dependence 
along the coexistence curve 

At the phase boundary between liquid and water we can 
write the free energy change as:

𝑑𝑑𝐺𝐺 =
𝜕𝜕𝐺𝐺𝑔𝑔
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The rate of change of free energy with number of moles is
called the chemical potential.
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The significance of chemical 
potential of coexisting phases 

We can write the Gibbs free energy change using the following
notation:

𝑑𝑑𝐺𝐺 = 𝜇𝜇𝑔𝑔𝑑𝑑𝑛𝑛𝑔𝑔 + 𝜇𝜇ℓ𝑑𝑑𝑛𝑛ℓ

Note that if the system is entirely composed of gas molecules
the chemical potential µg will be large and µl will be zero.
Under these conditions the number of moles of gas will 
decrease dng < 0 and the number of moles of liquid will 
increase dnl > 0.  Since every mole of gas molecules converted
results in a mole of liquid molecules we have that:

𝑑𝑑𝑛𝑛𝑔𝑔 = −𝑑𝑑𝑛𝑛ℓ



Coexistence criterion 
In terms of chemical potential, the Gibbs energy for the phase 
equilibrium is:

𝑑𝑑𝐺𝐺 = 𝜇𝜇𝑔𝑔 − 𝜇𝜇ℓ 𝑑𝑑𝑛𝑛𝑔𝑔

Since the two phases are in equilibrium dG = 0 and since 
dng ≠ 0 we have µg = µl.  In plain language, if two phases of a 
single substance are in equilibrium their chemical potentials 
are equal.

If the two phases are not in equilibrium a spontaneous 
transfer of matter from one phase to the other will occur in 
the direction that minimizes dG.  Matter is transferred from a 
phase with higher chemical potential to a phase with lower 
chemical potential consistent with the negative sign of Gibb's 
free energy for a spontaneous process.



Solid-liquid coexistence curve
To derive expressions for the coexistence curves on the 
phase diagram we use the fact that the chemical potential 
is equivalent in the two phases.  We consider two phases 
α and β and write

µα(T,P) = µβ(T,P)

Now we take the total derivative of both sides
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The appearance of this equation is quite different from 
previous equations and yet you have seen this equation 
before.  The reason for the apparent difference is the 
symbol µ, which is just the molar free energy.



The Clapeyron equation
Substituting these factors into the total derivative above
we have

𝑉𝑉𝑚𝑚𝑎𝑎𝑑𝑑𝜕𝜕 − 𝑆𝑆𝑚𝑚𝑎𝑎 𝑑𝑑𝜕𝜕 = 𝑉𝑉𝑚𝑚𝑏𝑏𝑑𝑑𝜕𝜕 − 𝑆𝑆𝑚𝑚𝑏𝑏 𝑑𝑑𝜕𝜕

Solving for dP/dT gives

𝑑𝑑𝜕𝜕
𝑑𝑑𝜕𝜕

=
𝑆𝑆𝑚𝑚𝑏𝑏 − 𝑆𝑆𝑚𝑚𝑎𝑎

𝑉𝑉𝑚𝑚𝑏𝑏 − 𝑉𝑉𝑚𝑚𝑎𝑎
=
∆𝑆𝑆𝑚𝑚
∆𝑉𝑉𝑚𝑚

=
∆𝐻𝐻𝑚𝑚
𝜕𝜕∆𝑉𝑉𝑚𝑚

This equation is known as the Clapeyron equation.  It gives 
the two-phase boundary curve in a phase diagram with 
∆trsH and ∆trsV between them.  The Clapeyron equation can 
be used to determine the solid-liquid curve by integration.



Integrated Clapeyron equation
Think of dP/dT as the slope of a curve in T,P space. 
Temperature and pressure are the variables of the phase 
diagram:
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The integrals needed to make this useful are:
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The slope ∆Hm/∆Vm involves molar changes in enthalpy
and volume.



Integrated Clapeyron equation
The integrated equation is:

𝜕𝜕2 − 𝜕𝜕1 =
∆𝐻𝐻𝑚𝑚
∆𝑉𝑉𝑚𝑚

𝑙𝑙𝑛𝑛
𝜕𝜕2
𝜕𝜕1

Starting with a known point along the curve (e.g. the triple 
point or the melting temperature at one bar) we can calculate 
the rest of the curve referenced to this point.

This equation has applications such as understanding ice
skating, which uses the melting of water underneath the 
pressure of sharp blades or erosion due to the pressure of
ice that forms in cracks of rocks.



The liquid-vapor and solid-
vapor coexistence curves

The Clapeyron equation cannot be applied to a phase 
transition to the gas phase since the molar volume of a gas 
is a function of the pressure. We return to the equation:
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Making the assumption that Vm
g >> Vm

l we can use the 
ideal gas law to obtain a new expression for dP/dT.
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Justification for use of ideal gas
We can easily justify the assumption that Vm

g >> Vm
l .

If we think about liquid water near its boiling point, we can 
calculate 

𝑉𝑉𝑚𝑚ℓ =
𝑀𝑀
𝜌𝜌

where M is the molar mass and ρ is the density.  Here M = 18 
grams/mole and ρ = 1 gram/cm3.  Thus, 𝑉𝑉𝑚𝑚

𝑔𝑔= 18 cm3/mole or 
0.018 L/mole.  For the vapor we have

𝑉𝑉𝑚𝑚
𝑔𝑔 =

𝑅𝑅𝜕𝜕
𝜕𝜕

=
0.08206 𝐿𝐿 − 𝑎𝑎𝑎𝑎𝑎𝑎

𝑎𝑎𝑚𝑚𝑙𝑙 − 𝐾𝐾 373 𝐾𝐾
1 𝑎𝑎𝑎𝑎𝑎𝑎

= 30.6 𝐿𝐿



Vapor coexistence curves
Rearranging the expression we find: 

𝑑𝑑𝜕𝜕
𝑑𝑑𝜕𝜕

=
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𝑅𝑅𝜕𝜕2

Next we arrange the equation so the variables of P are on 
one side and those of T are on the other.
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Clausius-Clapeyron equation
Finally we integrate the equation:

𝑙𝑙𝑛𝑛
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If we use ∆H of evaporation the C-C equation can be used 
to describe the liquid-vapor coexistence curve and if we 
use ∆H of sublimation this equation can be used to 
describe the solid-vapor curve.  

Use ∆𝑣𝑣𝑎𝑎𝑣𝑣𝐻𝐻𝑚𝑚 for the liquid-vapor curve

Use ∆𝑠𝑠𝑠𝑠𝑏𝑏𝐻𝐻𝑚𝑚 for the solid-vapor curve



Applying the Clausius-
Clapeyron equation

The pressure derived from the C-C equation is the vapor 
pressure at the given temperature.  Applications also include
determining the pressure in a high temperature vessel
containing a liquid (e.g. a pressure cooker).  If you are given
an initial set of parameters such as the normal boiling point,
for example you may use these as T1 and P1.  Then if you
are given a new temperature T2 you can use the C-C to 
calculate P2.
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