Dissociation of a weak acid

Calculate the pH of a 0.1 M solution of $\mathrm{HF}(\mathrm{pKa}=3.14)$.

$$
\mathrm{HF} \leftrightarrow \rightarrow \mathrm{H}^{+}+\mathrm{F}^{-}
$$

Dissociation of a weak acid

Calculate the pH of a 0.1 M solution of $\mathrm{HF}(\mathrm{pKa}=3.14)$.

$$
\mathrm{HF} \leftrightarrow \rightarrow \mathrm{H}^{+}+\mathrm{F}^{-}
$$

Solution:

Molecule	$H F$	F^{-}	H^{+}
Initial	0.1	0	0
Difference	-x	x	x
Equilibrium	$0.1-\mathrm{x}$	x	x

We can substitute these values into K_{a},

$$
K_{a}=\frac{x^{2}}{0.1-x}
$$

Where $\mathrm{K}_{\mathrm{a}}=10^{-\mathrm{pKa}}=10^{-3.14}=7.244 \times 10^{-4}$

Dissociation of a weak acid

We can be confident that $x \ll 0.1$ so we can make the approximation

$$
K_{a} \approx \frac{x^{2}}{0.1}
$$

Thus,

$$
\begin{gathered}
x \approx \sqrt{C K_{a}} \\
x \approx \sqrt{7.244 \times 10^{-5}} \\
x=0.00815
\end{gathered}
$$

Finally, the pH is calculated from x , since $\mathrm{x}=\left[H^{+}\right]$,

$$
p H=-\log _{10}(0.00815)=2.1
$$

