Dissociation of a weak acid

Calculate the pH of a 0.1 M solution of HF (pKa = 3.14).

 $\mathsf{HF} \longleftrightarrow \mathsf{H}^{\scriptscriptstyle +} + \mathsf{F}^{\scriptscriptstyle -}$

Dissociation of a weak acid

Calculate the pH of a 0.1 M solution of HF (pKa = 3.14).

$\mathsf{HF} \leftarrow \rightarrow \mathsf{H}^{\scriptscriptstyle +} + \mathsf{F}^{\scriptscriptstyle -}$

Solution:

Molecule	HF		H^+
Initial	0.1	0	0
Difference	-X	Х	Х
Equilibrium	0.1 - x	Х	Х

We can substitute these values into K_a , $K_a = \frac{x^2}{0.1 - x}$

Where $K_a = 10^{-pKa} = 10^{-3.14} = 7.244 \times 10^{-4}$

Dissociation of a weak acid

We can be confident that x << 0.1 so we can make the approximation

Thus,

$$x \approx \sqrt{7.244 \ x \ 10^{-5}}$$

 $x \approx \sqrt{CK_a}$

x = 0.00815

Finally, the pH is calculated from x, since $x = [H^+]$,

$$pH = -\log_{10}(0.00815) = 2.1$$