

Free Energy at Constant T and V

Starting with the First Law

 $dU = \delta w + \delta q$

At constant temperature and volume we have $\delta w = 0$ and $dU = \delta q$

Free Energy at Constant T and V

Starting with the First Law $dU = \delta w + \delta q$ At constant temperature and volume we have $\delta w = 0$ and $dU = \delta q$ Recall that $dS \ge \delta q/T$ so we have $dU \le TdS$

```
Free Energy at Constant T and V
Starting with the First Law
                      dU = \delta w + \delta q
At constant temperature and volume we have \delta w = 0 and
                         dU = \delta q
Recall that dS \ge \delta q/T so we have
                         dU \leq TdS
which leads to
                       dU - TdS \le 0
Since T and V are constant we can write this as
                       d(U - TS) \leq 0
The quantity in parentheses is a measure of the spontaneity
of the system that depends on known state functions.
```

Definition of Helmholtz Free Energy

We define a new state function: A = U -TS such that $dA \le 0$. We call A the Helmholtz free energy. At constant T and V the Helmholtz free energy will decrease until all possible spontaneous processes have occurred. At that point the system will be in equilibrium. The condition for equilibrium is dA = 0.

Definition of Helmholtz Free Energy

Expressing the change in the Helmholtz free energy we have $\Delta A = \Delta U - T\Delta S$

for an isothermal change from one state to another.

The condition for spontaneous change is that ΔA is less than zero and the condition for equilibrium is that $\Delta A = 0$. We write

 $\Delta A = \Delta U - T \Delta S \le 0$ (at constant T and V)

Definition of Helmholtz Free Energy

Expressing the change in the Helmholtz free energy we have $\Delta A = \Delta U - T\Delta S$

for an isothermal change from one state to another.

The condition for spontaneous change is that ΔA is less than zero and the condition for equilibrium is that $\Delta A = 0$. We write

 $\Delta A = \Delta U - T\Delta S \le 0$ (at constant T and V)

If ΔA is greater than zero a process is not spontaneous. It can occur if work is done on the system, however. The Helmholtz free energy has an important physical interpretation. Noting the $q_{rev} = T\Delta S$ we have $\Delta A = \Delta U - q_{rev}$ According to the first law $\Delta U - q_{rev} = w_{rev}$ so $\Delta A = w_{rev}$ (reversible, isothermal) A represents the maximum amount of reversible work that can be extracted from the system.

Definition of Gibbs Free Energy

Most reactions occur at constant pressure rather than constant volume.

Using the facts that $\delta q_{rev} \leq TdS$ and $\delta w_{rev} = -PdV$ we have: dU $\leq TdS - PdV$

Definition of Gibbs Free Energy

Most reactions occur at constant pressure rather than constant volume.

Using the facts that $\delta q_{rev} \leq TdS$ and δw_{rev} = -PdV we have: dU $\leq TdS - PdV$

which can be written dU - TdS + PdV \leq 0.

The = sign applies to an equilibrium condition and

the < sign means that the process is spontaneous. Therefore: $d(U - TS + PV) \le 0$ (at constant T and P)

Definition of Gibbs Free Energy

Most reactions occur at constant pressure rather than constant volume.

Using the facts that $\delta q_{rev} \le TdS$ and $\delta w_{rev} = -PdV$ we have: $dU \le TdS - PdV$

which can be written dU - TdS + PdV \leq 0.

The = sign applies to an equilibrium condition and the < sign means that the process is spontaneous. Therefore: $d(U - TS + PV) \le 0$ (at constant T and P) We define a state function G = U + PV - TS = H - TS. Thus, $dG \le 0$ (at constant T and P) The quantity G is called the Gibb's free energy. In a system at constant T and P, the Gibb's energy will decrease as the result of spontaneous processes until the system reaches equilibrium, where dG = 0.

Comparing Gibbs and Helmholtz

Comparing the Helmholtz and Gibb's free energies we see that A(V,T) and G(P,T) are completely analogous except that A is valid at constant V and G is valid at constant P. We can see that

G = A + PV

Comparing Gibbs and Helmholtz

Comparing the Helmholtz and Gibb's free energies we see that A(V,T) and G(P,T) are completely analogous except that A is valid at constant V and G is valid at constant P. We can see that G = A + PV

which is exactly analogous to H = U + PV

Comparing Gibbs and Helmholtz

Comparing the Helmholtz and Gibb's free energies we see that A(V,T) and G(P,T) are completely analogous except that A is valid at constant V and G is valid at constant P. We can see that G = A + PV

which is exactly analogous to H = U + PV

the relationship between enthalpy and internal energy. For chemical processes we see that

 $\Delta G = \Delta H - T\Delta S \le 0 \text{ (at constant T and P)}$ $\Delta A = \Delta U - T\Delta S \le 0 \text{ (at constant T and V)}$