Caspase folding kinetics

Caspase-3 has been shown to have a domain-swapped folded form (F_2) and a dimeric intermediate (I_2). The mechanism is:

$$\begin{array}{ccc} k_{1} k_{1} & k_{2} \\ 2 \cup \longleftarrow I_{2} \xrightarrow{} F_{2} \end{array}$$

Assuming that $k_2 >> k_1$ determine an expression for the rate of formation of the folded dimer F_2 as a function of the concentration of the starting unfolded polypeptide [U].

Caspase folding kinetics

Caspase-3 has been shown to have a domain-swapped folded form (F_2) and a dimeric intermediate (I_2). The mechanism is:

$$\begin{array}{ccc} k_{1} k_{1} & k_{2} \\ 2 \cup \overleftarrow{\leftarrow} & I_{2} \xrightarrow{} & F_{2} \end{array}$$

Assuming that $k_2 >> k_1$ determine an expression for the rate of formation of the folded dimer F_2 as a function of the concentration of the starting unfolded polypeptide [U]. Solution: First we express the mechanistic rate scheme in terms of kinetic equations.

$$\frac{d[U]}{dt} = -k_1[U]^2 + k_{-1}[I_2]$$
$$\frac{d[I_2]}{dt} = -(k_{-1} + k_2)[I_2] + k_1[U]^2$$
$$\frac{d[F_2]}{dt} = k_2[I_2]$$

Caspase folding kinetics

Since $k_2 >> k_1$ we can apply the steady state approximation $\frac{d[I_2]}{dt} = -(k_{-1} + k_2)[I_2] + k_1[U]^2 \approx 0$

We solve the concentration of the intermediate I₂. $[I_2] \approx \frac{k_1 [U]^2}{k_{-1} + k_2}$

We substitute that solution into the equation for the appearance of the folded product to obtain an equation interms of the initial unfolded protein U.

$$\frac{d[F_2]}{dt} = k_2[I_2] = \frac{k_1 k_2[U]^2}{k_{-1} + k_2}$$