The rate data and thermodynamic data for the unfolding of the protein racemase is given below. Determine the rate constants for folding and unfolding. The reaction is a twostate process shown below:

 $F \leftrightarrow U$

Temperature (K)	Equilibrium Constant	Observed Unfolding Rate
310	1.2	1.3 x 10 ³ s ⁻¹
340	5.6	3.2 x 10 ⁴ s ⁻¹

- A. Calculate the rate constant for folding and unfolding at each temperature.
- B. Calculate the activation energy for the folding and unfolding processes.

A. Calculate the rate constant for folding and unfolding at each temperature.

Temperature	Equilibrium	Observed Unfolding
(K)	Constant	Rate
310	1.2	1.3 x 10 ³ s ⁻¹
340	5.6	3.2 x 10 ⁴ s ⁻¹

Solution: Solve two equations and two unknowns to obtain the intrinsic rate constants.

$$K = \frac{k_u}{k_f} ; \quad k_{obs} = k_u + k_f$$

$$k_u = k_{obs} - k_f$$

$$Kk_f = k_{obs} - k_f$$

$$(K+1)k_f = k_{obs}$$

$$k_f = \frac{k_{obs}}{K+1} = \frac{1300 \ s^{-1}}{2.2} = 590 \ s^{-1} \ at \ 310 \ K$$

A. Calculate the rate constant for folding and unfolding at each temperature.

Temperature	Equilibrium	Observed Unfolding
(K)	Constant	Rate
310	1.2	1.3 x 10 ³ s ⁻¹
340	5.6	3.2 x 10 ⁴ s ⁻¹

$$k_f = \frac{k_{obs}}{K+1} = \frac{1300 \ s^{-1}}{2.2} = 590 \ s^{-1}$$
 at 310 K

 $k_u = k_{obs} - k_f = 1300 - 590 = 710 \, s^{-1} \, at \, 310 \, K$

$$k_f = \frac{k_{obs}}{K+1} = \frac{3.2 \ x \ 10^4 \ s^{-1}}{6.6} = 4800 \ s^{-1} \ at \ 340 \ K$$

 $k_u = k_{obs} - k_f = 32000 - 4800 = 27200 \, s^{-1} \, at \, 340 \, K$

B. Calculate the activation energy for the folding and unfolding processes.

Solution: Using the rate constants calculated in part A use the Arrhenius equations for each pair to obtain the activation energy.

$$E_{a} = \frac{-R \ln \frac{k_{2}}{k_{1}}}{\left(\frac{1}{T_{2}} - \frac{1}{T_{1}}\right)}$$

For folding we have

$$E_{a,f} = \frac{-R \ln \frac{5400}{590}}{\left(\frac{1}{340} - \frac{1}{310}\right)} = 64.6 \ kJ/mol$$

B. Calculate the activation energy for the folding and unfolding processes.

Solution: Using the rate constants calculated in part A use the Arrhenius equations for each pair to obtain the activation energy.

$$E_{a} = \frac{-R \ln \frac{k_{2}}{k_{1}}}{\left(\frac{1}{T_{2}} - \frac{1}{T_{1}}\right)}$$

And for unfolding we have

$$E_{a,u} = \frac{-R \ln \frac{27200}{710}}{\left(\frac{1}{340} - \frac{1}{310}\right)} = 106.4 \ kJ/mol$$