Michaelis-Menten Kinetics

The reaction of fructose-6-phosphate isomerase was monitored using radioactively labeled substrate. $V_{max} = 4240 \ \mu Ms^{-1}$ when the enzyme concentration was 1.2×10^{-7} M. The initial rate was measured using the following substrate concentrations. Calculate K_m and k_{cat} for this enzyme.

V ₀ (μMs ⁻¹)	620	1210	1540	2120	3460
S (x 10 ⁻³ M)	1.0	2.2	3.2	5.6	24.8

Michaelis-Menten Kinetics

The reaction of fructose-6-phosphate isomerase was monitored using radioactively labeled substrate. $V_{max} = 4240 \ \mu Ms^{-1}$ when the enzyme concentration was 1.2×10^{-7} M. The initial rate was measured using the following substrate concentrations. Calculate K_m and k_{cat} for this enzyme.

V ₀ (μMs ⁻¹)	620	1210	1540	2120	3460
S (x 10 ⁻³ M)	1.0	2.2	3.2	5.6	24.8

Solution: k_{cat} is calculated as follows: $k_{cat} = \frac{V_{max}}{[E]_0} = \frac{4240 \ x \ 10^{-6} \ Ms^{-1}}{1.2 \ x \ 10^{-7} \ M} = 35,300 \ s^{-1}$

Michaelis-Menten Kinetics

Solution: To calculate K_m we use the observation that K_m is equal to the substrate concentration that gives $\frac{1}{2}$ of V_{max} . $K_m = [S]$ when $V_0 = \frac{V_{max}}{2}$

In the table we find the entry at which $V_0 = 2120 \ \mu Ms^{-1}$ and then use the substrate concentration at that value.

$$K_m = 5.6 \ge 10^{-3} \text{M}$$

Note that the best way to obtain the value would be to fit the data set to a non-linear model of the Michaelis-Menten equation. However, the above method is acceptable as a short cut for working problems in this course.