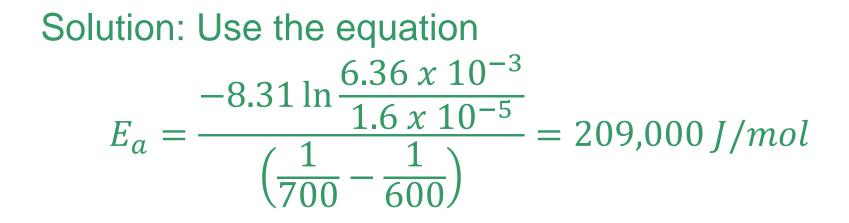
The decomposition of ethyl iodide was measured at elevated temperature. For the reaction $C_2H_5I \rightarrow C_2H_4 + HI$


At 600 K the rate constant was measured to be $1.6 \times 10^{-5} \text{ s}^{-1}$ and at 700 K the rate constant was found to be $6.36 \times 10^{-3} \text{ s}^{-1}$. Determine the activation energy and prefactor.

The decomposition of ethyl iodide was measured at elevated temperature. For the reaction $C_2H_5I \rightarrow C_2H_4 + HI$ At 600 K, k = 1.6 x 10⁻⁵ s⁻¹ At 700 K k = 6.36 x 10⁻³ s⁻¹

Solution: To calculate E_a use the equation

$$E_{a} = \frac{-R \ln \frac{k_{2}}{k_{1}}}{\left(\frac{1}{T_{2}} - \frac{1}{T_{1}}\right)}$$

The decomposition of ethyl iodide was measured at elevated temperature. For the reaction $C_2H_5I \rightarrow C_2H_4 + HI$ At 600 K, k = 1.6 x 10⁻⁵ s⁻¹ At 700 K k = 6.36 x 10⁻³ s⁻¹

Solution: We can obtain the prefactor from the Arrhenius equation

$$k = Aexp\{-E_a/RT\}$$

Therefore,
$$A = \frac{k}{exp\{-E_a/RT\}}$$
$$A = \frac{1.6 \times 10^{-5}}{exp\{-209000/(8.31)(600)\}}$$
$$A = 2.56 \times 10^{13} \text{ s}^{-1}$$