Activation energy

Calculate the activation energy for the reaction

$$
\mathrm{H}_{2}+\mathrm{I}_{2} \rightarrow 2 \mathrm{HI}
$$

given that the specific rate constant for reaction is
$4.3 \times 10^{-7} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ at 500 K and $6.3 \times 10^{-4} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ at
700 K . Calculate the rate constant at 600 K .

Activation energy

Calculate the activation energy for the reaction

$$
\mathrm{H}_{2}+\mathrm{I}_{2} \rightarrow 2 \mathrm{HI}
$$

given that the specific rate constant for reaction is
$4.3 \times 10^{-7} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ at 500 K and $6.3 \times 10^{-4} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ at
700 K . Calculate the rate constant at 600 K .
Solution: To calculate Ea use the equation

$$
E_{a}=\frac{-R \ln \frac{k_{2}}{k_{1}}}{\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)}
$$

Activation energy

Calculate the activation energy for the reaction

$$
\mathrm{H}_{2}+\mathrm{I}_{2} \rightarrow 2 \mathrm{HI}
$$

given that the specific rate constant for reaction is
$4.3 \times 10^{-7} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ at 500 K and $6.3 \times 10^{-4} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ at
700 K . Calculate the rate constant at 600 K .
Solution: Use the equation

$$
E_{a}=\frac{-8.31 \ln \frac{6.3 \times 10^{-4}}{4.3 \times 10^{-7}}}{\left(\frac{1}{700}-\frac{1}{500}\right)}=106,000 \mathrm{~J} / \mathrm{mol}
$$

Activation energy

Solution: We can obtain the prefactor from the Arrhenius equation

$$
k=A \exp \left\{-E_{a} / R T\right\}
$$

Therefore,

$$
\begin{gathered}
A=\frac{k}{\exp \left\{-E_{a} / R T\right\}} \\
A=\frac{4.3 \times 10^{-7}}{\exp \{-106000 /(8.31)(500)\}} \\
A=51,600 \mathrm{~s}^{-1}
\end{gathered}
$$

