Activation energy

Calculate the activation energy for the reaction

$$
\mathrm{N}_{2} \mathrm{O}_{5} \rightarrow 2 \mathrm{NO}_{2}+\frac{1}{2} \mathrm{O}_{2}
$$

given that the specific rate constants for the decomposition are $0.430 \mathrm{~s}^{-1}$ at 300 K and $697 \mathrm{~s}^{-1}$ at 500 K.

Activation energy

Calculate the activation energy for the reaction

$$
\mathrm{N}_{2} \mathrm{O}_{5} \rightarrow 2 \mathrm{NO}_{2}+\frac{1}{2} \mathrm{O}_{2}
$$

given that the specific rate constants for the
decomposition are $0.430 \mathrm{~s}^{-1}$ at 300 K and $697 \mathrm{~s}^{-1}$ at 500 K.

Solution: Use the equation

$$
E_{a}=\frac{-R \ln \frac{k_{2}}{k_{1}}}{\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)}
$$

Activation energy

Calculate the activation energy for the reaction

$$
\mathrm{N}_{2} \mathrm{O}_{5} \rightarrow 2 \mathrm{NO}_{2}+\frac{1}{2} \mathrm{O}_{2}
$$

given that the specific rate constants for the
decomposition are $0.430 \mathrm{~s}^{-1}$ at 300 K and $697 \mathrm{~s}^{-1}$ at
500 K.
Solution: Use the equation

$$
E_{a}=\frac{-8.31 \ln \frac{697}{0.430}}{\left(\frac{1}{500}-\frac{1}{300}\right)}=46,000 \mathrm{~J} / \mathrm{mol}
$$

