

- $A \rightarrow B$  and  $A \rightarrow C$  so that:
- $d[A]/dt = -(k_1 + k_2)[A]$ 
  - $d[B]/dt = k_1[A]$

• 
$$d[C]/dt = k_2[A]$$

B







- $d[A]/dt = -(k_1 + k_2)[A]$
- $d[B]/dt = k_1[A]$
- $d[C]/dt = k_2[A]$
- Solve for [A] first:  $[A] = [A]_0 \exp\{-(k_1 + k_2)t\}$





- $d[A]/dt = -(k_1 + k_2)[A]$
- $d[B]/dt = k_1[A]$
- $d[C]/dt = k_2[A]$
- Solve for [A] first:
- $[A] = [A]_0 \exp\{-(k_1 + k_2)t\}$ then
- $\frac{d[B]}{dt} = k_1[A]_0 \exp\{-(k_1 + k_2)t\}$  $\frac{d[C]}{dt} = k_2[A]_0 \exp\{-(k_1 + k_2)t\}$

• The solutions are:



$$[B] = \frac{k_1[A]_0}{k_1 + k_2} \Big( 1 - \exp\{-(k_1 + k_2)t\} \Big)$$
$$[C] = \frac{k_2[A]_0}{k_1 + k_2} \Big( 1 - \exp\{-(k_1 + k_2)t\} \Big)$$

• The production of B and C occurs with a constant proportion:  $\frac{[B]}{[C]} = \frac{k_1}{k_2}$ 



# Example from fluorescence Competing or parallel processes



Photoexcitation followed by return to the S<sub>0</sub> ground state.

- Decay of the singlet  $S_1$  state can occur either radiatively by fluorescence ( $k_f$ ) or by internal conversion ( $k_{IC}$ ).
  - $d[S_1]/dt = -(k_f + k_{IC})[S_1]$
- The overall decay rate constant is the sum of the rate constants. The fluorescence quantum yield is

$$\Phi = \frac{k_f}{k_f + k_{IC}}$$



- A → B → C rate equations are:
- $d[A]/dt = -k_1[A]$
- $d[B]/dt = k_1[A] k_2[B]$
- $d[C]/dt = k_2[B]$
- Either k<sub>1</sub> or k<sub>2</sub> can be the rate limiting step.



• First solve eqn. for A  $[A] = [A]_o e^{-k_1 t}$ 



• First solve eqn. for A  $[A] = [A]_o e^{-k_1 t}$ • Substitute into eqn. for B  $\frac{d[B]}{dt} = k_1[A] - k_2[B] = k_1[A]_o e^{-k_1 t} - k_2[B]$   $[B] = \frac{k_1[A]_o}{k_2 - k_1} \left( e^{-k_1 t} - e^{-k_2 t} \right)$ 



- First solve eqn. for A  $[A] = [A]_o e^{-k_1 t}$ • Substitute into eqn. for B  $\frac{d[B]}{dt} = k_1[A] - k_2[B] = k_1[A]_o e^{-k_1 t} - k_2[B]$   $[B] = \frac{k_1[A]_o}{k_2 - k_1} \left( e^{-k_1 t} - e^{-k_2 t} \right)$
- Similarly for C

$$[C] = [A]_o \left( 1 - \frac{1}{k_2 - k_1} (k_2 e^{-k_1 t} - k_1 e^{-k_2 t}) \right)$$

## Populations as a function of time



- The population as a function of time is given by the solutions to the sequential first order reactions.
- The case shown is intermediate with  $k_2 = 1.5k_1$ .
- The population of B grows and reaches a maximum and then decays.

# Rate determining step

- If k<sub>2</sub> >> k<sub>1</sub> then the first (A → B) step becomes the rate-limiting step.
- If the A → B step is rate limiting then little or no B will be observed even though it is formed on the reaction path.
- If k<sub>1</sub> >> k<sub>2</sub> then the second (B → C) step becomes the rate limiting step.
- If the B → C step is rate limiting then there will be a significant build-up of the intermediate state B.