
Molecular model for 
non-ideal solutions

We can express the potential energy of the solution in the form

U = N11e11 + N12e12 + N22e22

where Nij is the number of neighboring pairs of molecules of 

type i and j and where eij is the interaction energy of a pair of 

molecules of type i and j when they are next to each other.   We 

assume a coordination number z where z is between 6 and 10.  

There are N1 component 1 molecules in solution so the number 

of 1-1 neighboring pairs is N11 = zN1x1/2 where the factor of used 

to avoid counting each 1-1 pair twice.  Similarly, for component 2 

we have N22 = zN2x2/2.  The same value of z is used because we 

assume that molecular sizes are about the same.  
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z is the solvation number (here it is 6)

Aspects of the microscopic model



Molecular model for 
non-ideal solutions

The number of 1-2 neighboring pairs is given by 

N12 = zN1x2 = zN2x1.  

The total interaction energy in the solution is

U = zN1x1e11/2 + zN2x2e22/2 + zN1x2e12

Using the definitions x1 = N1/(N1+N2) and x2 = N2/(N1+N2) 

we can reexpress the interaction energy as

U = (N1
2e11/2 + N2

2e22/2 + N1N2e12)z/(N1+N2)

We can focus on the non-ideality of the solution by introducing 

the quantity

w = U = e11 + e22 - 2e12



Comparing ideal and real energies

For an ideal solution e11 = e22 = e12 and so w = 0.  However, for a 

non-ideal solution e11  e22  e12.  

Substituting e12 = (e11 + e22 - w)/2 we have

U = (N1
2e11/2 + N2

2e22/2 + N1N2(e11 + e22 - w)/2)z/(N1+N2)

U = zN1e11/2 + zN2e22/2 - zwN1N2/2(N1+N2)

The last term represents the non-ideality in the solution.

Therefore, we can express the Gibbs energy of the solution as

Gsoln = Gideal - zwN1N2/2(N1+N2)

or units of moles

Gsoln = Gideal - zwNAn1n2/2(n1+n2)



The chemical potential of component 1 is given by

Note that the chemical potential of an ideal solution is given by

m1 = m1
* + RT lnx1

The derivative is

This leads to the expression

m1 = m1
* + RT lnx1 -zwNAx2

2/2

m1 = m1
* + RT ln(x1e -zwx22/2kT)

where we have used the fact that k = R/NA.

Our simple model of a solution has led directly to an expression 

for the activity in terms of the interaction strength w, 

coordination number z, mole fraction x2, and thermal energy kT.
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Definition of a critical point

The activity is a1 = P1/P1
* = x1exp(-zwx2

2/2kT)

The activity coefficient is  g1 = exp(-zwx2
2/2kT)

The expression derived is exactly analogous to the expressions 

used above for deviations from Raoult's law provided 

 = -zw/2kT.  

This simple model not only allows us to calculate activities from 

molecular properties, but it also includes the possibility of phase 

separation.  A critical point in a two component phase diagram 

indicates that there is a region of temperature or pressure

beyond which the solution separates into two phases.



Phase separation

In the case of the model liquid discussed here phase separation 

will occur if zw/2kT > 2 or in other words if the parameter  < -2.  

We first show the relationship between the activities of two 

species in a non-ideal binary solution and then use all of the 

information to discuss the free energy of mixing.  This leads 

naturally to the idea of limited solubility even with this very 

simple model.
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Application of the 
Gibbs-Duhem equation

At this point, you might well ask whether the activity coefficient 

for component 1 has any bearing on the magnitude of the 

activity coefficient for component 2.  In fact, they are related as 

we now prove using the Gibbs-Duhem relation.  The Gibbs-

Duhem equation states that

n1dm1 + n2dm2 = 0.

Dividing through by n the Gibbs-Duhem equation is

x1dm1 + x2dm2 = 0.

dm2 = - x1dm1 / x2

with m1 = m1
* + RT ln(x1e x22) where  = -zw/2kT,



Application of the 
Gibbs-Duhem equation

dm1 = - RTdx1/x1 + 2(1- x1)dx1 and dm2 = - RTdx1/x2 + 2x1dx1

Change variables from dx1 to - dx2.

dm2 = RTdx2/x2 + 2(1-x2)dx2

Now we integrate,

m2 - m2
* = RTlnx2 + (1-x2)2

and finally

m2 = m2
* + RT ln(x2e x12)

which shows that the activity of coefficient of component 1 

implies the magnitude of the activity coefficient for 

component 2.

g1 = exp(-zwx2
2/2kT) implies g2 = exp(-zwx1

2/2kT)



Parameter for non-ideal solutions

As a result of our model for the interaction energy of particles 

in a non-ideal solution we can calculate DmixG.  

For a two component solution

DmixG = n1RTln x1 + n2RTln x2 - zwNA/2(n2x1
2 + n1x2

2)

DmixG = n1RTln x1 + n2RTln x2 - zwNA(n1 + n2)x1x2/2

Our final expression for DmixG is

DmixG = nRT(x1ln x1 + x2ln x2 - zwx1x2/2kT)

which is clearly separable into an ideal part and the excess free 

energy discussed previously.  We can plot DmixG/nRT for various 

values of zw/2kT as shown below.



Parameter for non-ideal solutions



Phase separation and critical point

Note that for  < -2 the curvature is negative in the 
central region (around a mole fraction of x1 = 0.5).  This 
corresponds to a region where mixing is not spontaneous.  
In other words, there will be a phase separation in this
region.
By assumption, the entropy of mixing is still equal to the 
entropy of mixing of an ideal solution.  Thus,
DmixS = -nR(x1ln x1 + x2ln x2)
and therefore the non-ideality appears in the enthalpy
DmixH = - zwNAx1x2/2.


