Molecular model for
non-ideal solutions

We can express the potential energy of the solution in the form
U=Njp€5 + Nppepp + Nyey,

where N;; is the number of neighboring pairs of molecules of
type i and j and where g; is the interaction energy of a pair of
molecules of type i and j when they are next to each other. We
assume a coordination number z where z is between 6 and 10.
There are N, component 1 molecules in solution so the number
of 1-1 neighboring pairs is N,; = zN,x,/2 where the factor of used
to avoid counting each 1-1 pair twice. Similarly, for component 2
we have N,, = zN,x,/2. The same value of z is used because we
assume that molecular sizes are about the same.



Aspects of the microscopic model

“ Interaction energies
€n self interaction

“ €2 self interaction
“ €12 Cross term

. z is the solvation number (here it is 6)




Molecular model for
non-ideal solutions

The number of 1-2 neighboring pairs is given by

N, =zNX, = zZN,X;.

The total interaction energy in the solution is

U =zNx,e,,/2 + zN,x,e,,/2 + zNx,e,,

Using the definitions x; = N,/(N,+N,) and x, = N,/(N;+N,)

we can reexpress the interaction energy as

U=(N,%e;,/2 + N,%e,,/2 + N;N,e,,)z/(N,+N,)

We can focus on the non-ideality of the solution by introducing
the quantity



Comparing ideal and real energies

For an ideal solution e, = e,,=e,, and sow = 0. However, for a
non-ideal solution e ; # e,, # e,,.

Substituting e, = (e;; + €,, - w)/2 we have

U=(N,%e;,/2 + N,%e,,/2 + N;N,(e; + e,, - W)/2)z/(N,+N,)
U=12zN,e,,/2 +zN,e,,/2 - zwN;N,/2(N,+N,)

The last term represents the non-ideality in the solution.
Therefore, we can express the Gibbs energy of the solution as

GsoIn = Gideal - ZWNlNZ/Z(Nl-I_NZ)
or units of moles
Gsoln = Gideal - ZWNAnan/Z(n1+n2)



The chemical potential of component 1 is given by

_(8G\_(0G") 2zwWN,[dn;ny/(n, +n,)
M1~ 1 on, on, 2 on,

Note that the chemical potential of an ideal solution is given by
W, =, +RTInx,
The derivative is

on,n,/(n,+n,)\ _ n, n.n,
on, n,+n, (”1 + nz)

5 = Xo = X1 X, = Xo(1 = Xp) = X,°

This leads to the expression

W, = Y, + RT Inx, -zwN,x,2/2

U, = W, + RT In(x e 2wx2%/2kT)

where we have used the fact that k = R/N,.

Our simple model of a solution has led directly to an expression
for the activity in terms of the interaction strength w,

coordination number z, mole fraction x,, and thermal energy kT.



Definition of a critical point

The activity is a, = P;/P;" = x,exp(-zwx,2/2kT)

The activity coefficient is y, = exp(-zwx,?%/2kT)

The expression derived is exactly analogous to the expressions
used above for deviations from Raoult's law provided

o =-zw/2KkT.

This simple model not only allows us to calculate activities from
molecular properties, but it also includes the possibility of phase
separation. A critical point in a two component phase diagram
indicates that there is a region of temperature or pressure
beyond which the solution separates into two phases.



Phase separation

In the case of the model liquid discussed here phase separation
will occur if zw/2kT > 2 or in other words if the parameter a < -2.
We first show the relationship between the activities of two
species in a non-ideal binary solution and then use all of the
information to discuss the free e%ergy of mixing. This leads
naturally to the idea of limited solubility even with this very

simple model.



Application of the
Gibbs-Duhem equation

At this point, you might well ask whether the activity coefficient
for component 1 has any bearing on the magnitude of the
activity coefficient for component 2. In fact, they are related as
we now prove using the Gibbs-Duhem relation. The Gibbs-
Duhem equation states that

n,du, + n,du, = 0.

Dividing through by n the Gibbs-Duhem equation is

x,dp, + x,dp, = 0.

du, = - x,dpy /%,

with u, = u," + RT In(x,e ®2%) where o = -zw/2kT,



Application of the
Gibbs-Duhem equation

du, = - RTdx,/x; + 2a.(1- x,)dx; and du, = - RTdx,/x, + 2ax,dx,
Change variables from dx; to - dx,.

du, = RTdx,/x, + 2a(1-x,)dx,

Now we integrate,

W, - U, = RTInx, + o(1-x,)?

and finally

w, = W, + RT In(x,e ®x1°)

which shows that the activity of coefficient of component 1
implies the magnitude of the activity coefficient for
component 2.

v, = exp(-zwx,?/2kT) implies y, = exp(-zwx,2/2kT)



Parameter for non-ideal solutions

As a result of our model for the interaction energy of particles
in a non-ideal solution we can calculate A, G.

For a two component solution

A,.,G = n RTIn x; + n,RTIn x, - zwN,/2(n,x;? + n;x,?)

A,.,G = n;RTIn x; + n,RTIn x, - zZWN,(n; + n,)x,x,/2

Our final expression for A, G is

A, G = NRT(x,In x; + x,In X, - ZWx,X,/2kT)

which is clearly separable into an ideal part and the excess free

energy discussed previously. We can plot A_. G/nRT for various

mix

values of zw/2kT as shown below.



A_ G/NRT

Parameter for non-ideal solutions




Phase separation and critical point

Note that for a < -2 the curvature is negative in the
central region (around a mole fraction of x; = 0.5). This
corresponds to a region where mixing is not spontaneous.
In other words, there will be a phase separation in this
region.

By assumption, the entropy of mixing is still equal to the
entropy of mixing of an ideal solution. Thus,

A.S = -nNR(x4In x; + x,In x,)

and therefore the non-ideality appears in the enthalpy
A H = - ZWN X X,/2.



