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Total derivative for two components

We consider the thermodynamics of two-component 

systems.  The ideas discussed here are easily 

generalized to multicomponent systems.  For a solution 

consisting of n1 moles of component 1 and n2 moles of 

component 2, the Gibbs energy is a function T and P 

and the two mole numbers n1 and n2.  The dependence 

on these variables is indicated by writing 

G = G(T,P,n1,n2).  The total derivative of G is given by

dG = G
T P,n1,n2

dT + G
P T,n1,n2

dP + G
n1 T,P,n2

dn1+
G
n2 T,P,n1

dn2



Gibbs energy at fixed composition

If the composition of the solution is fixed then we have

dn1 = dn2 = 0, and the last two terms are zero. In this 

case the functional form of the Gibb's energy is exactly 

the same as we have seen previously

where

dG = G
T P,n1,n2

dT + G
P T,n1,n2

dP

G
T P,n1,n2

= – S and G
P T,n1,n2

= V



The chemical potential in a mixture
The chemical potential is defined as

for component 1 and an analogous equation holds for 

component 2.  In general there may a greater number of 

components and each will have an associated chemical 

potential that is the derivative of the Gibbs energy with 

respect to the mole number of that component.  It is also 

evident that the chemical potential is a molar Gibbs energy 

for one component and for more than one component it is 

a partial molar Gibbs energy.  This is an intensive property 

and is just the Gibbs energy per mole.

1 = 1 T,P,2 = G
n1

T,P,n2

= GT,P,n2



For a binary solution the Gibbs energy is

dG = -SdT + VdP + 1dn1+2dn2

At constant T and P we have

dG = 1dn1 + 2dn2

A general expression for the Gibbs energy is

G = 1n1 + 2n2

For a one component system G = n consistent with the 

statements made previously that  is a molar Gibbs energy.

Other thermodynamic quantities have associated partial 

molar values.  The easiest to see physically is the partial 

molar volume Vj,m = (V/n) j.  

General Gibbs energy for a mixture



For a two component mixture the volume is

V = V1,mn1 + V2,mn2

For example, when 1-propanol and water are mixed, the final 

volume, V of the solution is not equal to the volumes of pure 1-

propanol and water.  The mixture of two components that can 

interact in a non-ideal fashion leads to a solution volume that is 

greater or less than that of the pure components.  The partial 

molar volumes allow this to be quantified.

Other thermodynamic quantities can also be expressed as partial 

molar derivatives.  In general for the jth component we have

d j = –S jdT + VjdP

Partial molar volume



Gibbs-Duhem Equation
Starting with G = 1n1 + 2n2 we can differentiate to obtain

dG = d1n1 + d2n2 + 1dn1+ 2dn2

Comparison with the above equation dG = 1dn1+ 2dn2

leads to 

n1d1 + n2d2 = 0.  

If we divide both sides by n1 + n2 we have

x1d1 + x2d2 = 0

where x1 and x2 are mole fractions.

These last two equations are two forms of the Gibbs-Duhem

equation.  The Gibbs-Duhem equation is important because it 

tells that if we know the chemical potential of one component as 

a function of composition, we can determine the other.



Gibbs-Duhem Equation

For example, the chemical potential of substance 1 in a 

two component mixture is

Where 0  x1  1.  The superscript * is the IUPAC 

notation for a property of a pure substance.  We can 

differentiate with respect to x1 and substitute into the 

Gibbs-Duhem equation to obtain

1 = 1
* + RT ln x1

d2 = –
x1

x2
d1 = – RT

x1

x2
d ln x1

= – RT
x1

x2

dx1

x1
= – RT

dx1

x2



and since dx1 = -dx2 we have

or 

Thus, we have shown that one can derive the chemical 

potential of substance 2 from substance 1.

The expression j = j* + RT ln xj implies that we can 

determine the chemical potential of any substance 

based on the knowledge of the chemical potential of 

the pure substance and the mole fraction xj.  One of 

our goals in the study of non-ideal solutions will be to 

prove this.

d2 = RT
dx2

x2

2 = 2
* + RT ln x2



Recall that if two phases are in equilibrium their chemical 

potentials are equal.  We can use this fact to our advantage.  

At any given temperature a liquid has a vapor pressure.  This 

means that the chemical potential of the vapor above the liquid 

must equal the chemical potential of the liquid itself.  This is just 

another way of saying that the liquid and its vapor are in 

chemical equilibrium.

j
sln = j

vap

If the pressure of the vapor phase is low we can consider it to be

ideal.  Thus we have

j
sln = j

vap = j
o (T) + RT ln Pj

where we have simply stated the chemical potential of the jth

component of the liquid relative to that of its standard state of 1 

bar of pressure j
o (T).  



Chemical potential of a solution

For pure component j the equation becomes

j
*(l) = j

*(vap) = j
o (T) + RT ln Pj

*

Thus

j
sln = j

* + RT ln Pj/Pj
*.

This is a central result for the study of liquid.  This result 

uses information from the vapor phase chemical 

potential above the liquid to give us information on the 

chemical potential in the liquid.


