Solubility of gases

Henry's law constants in $\mathrm{H}_{2} \mathrm{O}$ $\left(\mathrm{atm} \times 10^{3}\right)$	
He	131
$\mathrm{~N}_{2}$	86
CO	57
O_{2}	43
Ar	40
CO_{2}	1.6

Problem: Given that the
Partial pressure of CO_{2} in the atmosphere is 380 ppm , calculate the pH of a glass of pure water that comes to equilibrium with the atmosphere. $\left(\mathrm{pK}_{\mathrm{a}}=6.3\right)$

Solubility of gases

Problem: Given that the partial pressure of CO_{2} in the atmosphere is 380 ppm , calculate the pH of a glass of pure water that comes to equilibrium with the atmosphere. ($\mathrm{pK}_{\mathrm{a}}=6.3$)
Solution:

$$
\begin{gathered}
x_{\mathrm{CO}_{2}}=\frac{P_{\mathrm{CO}_{2}}}{K_{\mathrm{H}, \mathrm{CO}_{2}}} \\
x_{\mathrm{CO}_{2}}=\frac{3.8 \times 10^{-4} \mathrm{~atm}}{1600 \mathrm{~atm}}=2.375 \times 10^{-7} \\
c_{\mathrm{CO}_{2}} \approx x_{\mathrm{CO}_{2} c_{\mathrm{H}_{2} \mathrm{O}}}=\left(2.375 \times 10^{-7}\right)(55.5 \mathrm{M}) \\
c_{\mathrm{CO}_{2}} \approx 1.31 \times 10^{-5}
\end{gathered}
$$

Solubility of gases

Problem: Given that the partial pressure of CO_{2} in the atmosphere is 380 ppm , calculate the pH of a glass of pure water that comes to equilibrium with the atmosphere. ($\mathrm{pK}_{\mathrm{a}}=6.3$)
The carbonic acid equilibrium is

$$
\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HCO}_{3}^{-}+\mathrm{H}^{+}
$$

The K_{a} is

$$
K_{a}=10^{-p K_{a}}=10^{-6.3}=5.01 \times 10^{-6}
$$

Given that the initial concentration is quite low,

$$
c_{\mathrm{CO}_{2}} \approx 1.31 \times 10^{-5}
$$

it would be best to solve for the $\left[\mathrm{H}^{+}\right]$using a reaction table.

Solubility of gases

Problem: Given that the partial pressure of CO_{2} in the atmosphere is 380 ppm , calculate the pH of a glass of pure water that comes to equilibrium with the atmosphere.
($\mathrm{pK}_{\mathrm{a}}=6.3$)
Accounting for the $\left[\mathrm{H}^{+}\right]=10^{-7}$ in neutral water we have

$$
\begin{gathered}
K_{a}=\frac{x\left(10^{-7}+x\right)}{\left(c_{C O_{2}}-x\right)} \\
K_{a}\left(c_{C O_{2}}-x\right)=10^{-7} x+x^{2} \\
x^{2}+\left(K_{a}+10^{-7}\right) x-K_{a} c_{C O_{2}}=0 \\
x^{2}+\left(5.11 x 10^{-6}\right) x-6.56 x 10^{-11}=0
\end{gathered}
$$

Solubility of gases

Problem: Given that the partial pressure of CO_{2} in the atmosphere is 380 ppm , calculate the pH of a glass of pure water that comes to equilibrium with the atmosphere.
($\mathrm{pK}_{\mathrm{a}}=6.3$)
which leads to

$$
\begin{gathered}
x=\frac{-5.11 \times 10^{-6} \pm \sqrt{2.61 \times 10^{-11}+4\left(6.56 \times 10^{-11}\right)}}{2} \\
x=5.93 \times 10^{-6}
\end{gathered}
$$

and therefore $\mathrm{pH}=5.2$.

