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The Compression Factor
One way to represent the relationship between ideal and real
gases is to plot the deviation from ideality as the gas is 
compressed (i.e. as the pressure is increased).
The compression factor is defined as:

Written in symbols this becomes:

Note that perfect gases are also called ideal gases.
Imperfect gases are sometimes called real gases.

Compression Factor = Molar volume of gas
Molar volume of perfect gas

Z = Vm

Vm
perfect = PVm

RT



The Compression Factor
A plot of the compression factor reveals that many gases
exhibit Z < 1 for low pressure.  This indicates that attractive
forces dominate under these conditions.
As the pressure increases Z crosses 1 and eventually becomes
positive for all gases.  This indicates that the finite molecular
volume leads to repulsions between closely packed gas
molecules.  These repulsions are not including the ideal gas
model.

Attractive
Region

Repulsive
Region



The Virial Expansion
One way to represent the deviation of a gas from ideal (or
perfect) behavior is to expand the compression factor in
powers of the inverse molar volume.  Such an expansion is
known as a virial expansion.

The coefficients B, C etc. are known as virial coefficients.
For example, B is the second virial coefficient.
Virial coefficients depend on temperature.  From the preceding
considerations we see the B < 0 for ammonia, ethene, methane
and B > 0 for hydrogen.

Z = 1 + B
Vm

+ C
Vm

2 + ...



The Virial Equation of State
We write Z in complete form as:

An then solve for the pressure:

This expression is known as the virial equation of state.  
Note that if B, C etc. are all equal to zero this is just the ideal
gas law.  However, if these are not zero then this equation
contains corrections to ideal behavior.

PVm
RT = 1 + B

Vm
+ C

Vm
2 + ...

P = RT
Vm

1 + B
Vm

+ C
Vm

2 + ...



Relating the microscopic to 
the macroscopic

Real gases differ from ideal gases in two ways.
First they have a real size (extent).  The excluded volume
results in a repulsion between particles and larger pressure
than the corresponding ideal gas (positive contribution to
compressibility).  
Secondly, they have attractive forces between molecules. 
These are dispersive forces that arise from a potential energy
due to induced-dipole induced-dipole interactions.
We can relate the potential energy of a particle to the terms
in the virial expansion or other equation of state.  While we
will not do this using math in this course we will consider the
graphical form of the potential energy functions.



Hard Sphere Potential
A hard sphere potential is the easiest potential to parameterize.
The hard sphere diameter corresponds to the interatomic 
spacing in a closest packed geometry such as that shown
for the noble gas argon.
The diameter can be estimated
from the density of argon in
the solid state.  The hard sphere
potential is widely used because
of its simplicity.

u(r) = ∞ r < σ
u(r) =0              r > σ
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The Hard Sphere Equation of State
As a first correction to the ideal gas law 
we can consider the fact that a gas has
finite extent.  Thus, as we begin to decrease
the volume available to the gas the pressure
increases more than we would expect due
to the repulsions between the spheres of
finite molar volume, b, of the spheres.

P = nRT
V – nb Gas molecule

of volume B



The Hard Sphere Model
Low density: These are ideal gas conditions



The Hard Sphere Model
Increasing density: the volume is V
b is the molar volume of the    spheres.



The Hard Sphere Model
Increasing density



The Hard Sphere Model
Increasing density



The Hard Sphere Model
High density: At sufficiently high density
the gas becomes a high density fluid or
a liquid.



The Hard Sphere Model
Limiting density: at this density the hard
spheres have condensed into an ordered
lattice.  They are a solid. The “gas” cannot
be compressed further.

If we think about the density in each of these cases we can 
see that it increases to a maximum value.

The volume is nb
When the gas is
completely compressed.



The Lennard-Jones potential is a most commonly used 
potential function for non-bonding interactions in atomistic 
computer simulations.

VLJ(R) = 4ε σ
R

12 – σ
R

6

The potential has a long-range attractive tail –1/r6, and 
negative well depth ε, and a steeply rising repulsive wall 
at R = σ.  Typically the parameter σ is related to the
hard sphere diameter of the molecule.  For a monoatomic
condensed phase σ is determined either from the solid 
state or from an estimate of the packing in dense liquids.
The well depth e is related to the heat of vaporization of
a monatomic fluid.  For example, liquid argon boils at ~120K
at 1 atm.  Thus, ε ~ kT or 1.38x10-23 J/K(120 K) = 1.65x10-21 J.
This also corresponds to 1.03 kJ/mol.

Lennard-Jones Potential Function



Graphical Representation L-J Potential
The L-J potential function has a steep rise when r < σ.
This is the repulsive term in the potential that arises from
close contacts between molecules. The minimum is found
for Rmin = 21/6 σ.  The well depth is ε in units of energy.

ε

Rmin



The van der Waal’s Equation of State
The microscopic terms ε and σ in the L-J 
potential can be related to the a and b
parameters in the van der Waal’s equation of
state below.

The significance of b is the same as for the
hard sphere potential.  The parameter a is
related to the attractive force between
molecules.  It tends to reduce the pressure 
compared to an ideal gas.

P = nRT
V – nb – n2a

V2



The van der Waal’s Equation of State
in terms of molar volume

Recall that Vm = V/n so that the vdW equation
of state becomes:

We can plot this function for a variety of 
different temperatures.  As we saw for the 
ideal gas these are isotherms.  At sufficiently
high temperature the isotherms of the vdW 
equation of state resemble those of the ideal
gas.

P = RT
Vm – b – a

Vm
2



The argon phase diagram

Critical Point

For argon
Tc = 150.8 K
Pc = 4934.5 Pa
Vc = 74.9 cm3/mol



Significance of the critical point
Note that the vdW isotherms look very different
from those of the ideal gas below the critical
point.  Below the critical point there are two
possible phases, liquid and gas.  The liquid
phase is found at small molar volumes.
The gas phase is observed at larger molar 
volumes.  The shape of the isotherms is not
physically reasonable in the transition region
between the phases.  Note that the implication
is that there is a sudden change in volume
for the phase transition from liquid to gas.



View of the liquid region
of the argon phase diagram

Phase Equilibrium Region

Liquid



Critical Parameters
The critical parameters can be derived in terms
of the vdW a and b parameters as well as the
gas constant R.

The derivation can use calculus since
the derivative of the vdW equation of
state is zero at the critical point.

Given that this is also an inflection point 
the second derivative is also zero.

Pc = a
27b2

Tc = 8a
27Rb

Vc = 3b
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