Reversible and irreversible work

In chemical reactions we cannot often control the pressure. This is why we say that the pressure is constant and we write $w=-P \Delta V$. However, when we design a process to extract work from heat (i.e. in an engine) we want the pressure to change gradually. In the ideal case the pressure change is infinitely slow and we have a reversible process. Let's compare the energy we can extract from a reversible and irreversible process.

$$
w_{i r r}=-P_{e x t}\left(V_{2}-V_{1}\right) \quad w_{r e v}=-n R T \ln \left(\frac{V_{2}}{V_{1}}\right)
$$

What is the maximum pressure you can have as the final pressure $\left(P_{\text {ext }}\right)$? Note that V_{1} is the initial volume and V_{2} is the final volume, so the pressure must correspond to the final condition. The number of moles is n and the temperature is T in both cases (i.e. it is the same).

Reversible and irreversible work

Using the final condition we have

$$
P_{\text {ext }}=\frac{n R T}{V_{2}}
$$

Therefore,

$$
w_{i r r}=-\frac{n R T}{V_{2}}\left(V_{2}-V_{1}\right)
$$

Finally, we can write an expression only in terms of n, T and the two volumes, precisely as we did for the reversible case.

$$
w_{i r r}=-n R T\left(1-\frac{V_{1}}{V_{2}}\right)
$$

