## How many horse power?

If we assume that the pressure of the power stroke of a typical 3 liter engine is 100 atmospheres and the engine is running at 1800 rpm what is the output power? Assume that the engine runs at $25 \%$ efficiency. Please use units of horse power (1 horse power $=746$ Watts)

## How many horse power?

If we assume that the pressure of the power stroke of a typical 3 liter engine is 100 atmospheres and the engine is running at 1800 rpm what is the output power? Assume that the engine runs at $25 \%$ efficiency. Please use units of horse power (1 horse power $=746$ Watts)

Solution: The energy extracted for each cylinder is $\mathrm{w}=-\mathrm{P} \Delta \mathrm{V}$ and there are 6 cylinders so the work extracted revolution is $w=-6 P \Delta V$ times the efficiency:

$$
w=-6(100 \mathrm{~atm})(0.5 \mathrm{~L})(0.25)=-75 \mathrm{~L}-\mathrm{atm}
$$

Using the conversion $101.325 \mathrm{~J} / \mathrm{L}-\mathrm{atm}$ we have:

$$
\text { w = -75 L-atm = } 7600 \text { Joules per rev }
$$

## How many horse power?

If we assume that the pressure of the power stroke of a typical 3 liter engine is 100 atmospheres and the engine is running at 1800 rpm what is the output power? Assume that the engine runs at $25 \%$ efficiency. Please use units of horse power (1 horse power $=746$ Watts)

Since the engine is running 1800 rpm that corresponds to 30 revolutions per second. Therefore the power is:

$$
\begin{aligned}
& P=|w|(f r e q u e n c y ~ p e r ~ s e c o n d) \\
& P=7600(30) \text { Watts }=228 \text { kilowatts }
\end{aligned}
$$

One horse power corresponds to 746 Watts so this is a 300 horsepower engine.

