Work of expansion for a chemical reaction

If Zn metal reacts with HCl to generate H_{2} gas the reaction generates heat and does work as the H_{2} gas expands against atmospheric pressure. If 6 grams of Zn metal reacts with 1 M HCl in 0.2 L of solution, what Is the work of expansion against the atmosphere?

Work of expansion for a chemical reaction

If Zn metal reacts with HCl to generate H_{2} gas the reaction generates heat and does work as the H_{2} gas expands against atmospheric pressure. If 6 grams of Zn metal reacts with 1 M HCl in 0.2 L of solution, what Is the work of expansion against the atmosphere?
Solution: Step 1. Write a balanced reaction

$$
\mathrm{Zn}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{ZnCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

Step 2. Calculate the number of moles of each reagent

$$
\begin{aligned}
n_{Z n} & =\frac{m}{M_{m}}=\frac{6 \mathrm{gm}}{65.4 \mathrm{gm} / \mathrm{mol}}=0.092 \mathrm{~mol} \\
n_{H C l} & =c_{H C l} V_{H C l}=(1 \mathrm{M})(0.2 \mathrm{~L})=0.2 \mathrm{~mol}
\end{aligned}
$$

Work of expansion for a chemical reaction

If Zn metal reacts with HCl to generate H_{2} gas the reaction generates heat and does work as the H_{2} gas expands against atmospheric pressure. If 6 grams of Zn metal reacts with 1 M HCl in 0.2 L of solution, what Is the work of expansion against the atmosphere? Solution: Step 3. Compare the actual molar ratio to the stoichiometry. The actual ratio is

$$
\frac{n_{H C l}}{n_{Z n}}=\frac{0.2}{0.092}=2.17
$$

which is greater than the stoichiometric ratio of 2. Therefore, there is an excess of HCl and Zn is the limiting reagent.

Work of expansion for a chemical reaction

If Zn metal reacts with HCl to generate H_{2} gas the reaction generates heat and does work as the H_{2} gas expands against atmospheric pressure. If 6 grams of Zn metal reacts with 1 M HCl in 0.2 L of solution, what Is the work of expansion against the atmosphere? Step 4. Calculate the yield of H_{2} gas. Since H_{2} has a 1:1 mole ratio with Zn , there are 0.092 moles of H_{2} gas produced. Therefore, the work of expansion is:

$$
\begin{gathered}
w=-\Delta n R T \\
w=-(0.092 \mathrm{~mol})\left(8.31 \frac{\mathrm{~J}}{\mathrm{molK}}\right)(298 \mathrm{~K}) \\
w=-227 \text { Joules }
\end{gathered}
$$

