Molar Volume

What is the molar volume of liquid water and water vapor at 373 K . You may assume that the density of water is $1 \mathrm{gm} / \mathrm{cm}^{3}$.

Molar Volume

What is the molar volume of liquid water and water vapor at 373 K . You may assume that the density of water is $1 \mathrm{gm} / \mathrm{cm}^{3}$.
Solution: for the liquid we can calculate the molar volume using the formula:

$$
V_{m}=\frac{M_{m}}{\rho}
$$

Remember that density has units of grams per unit volume. Therefore, is also has units of molar mass per unit molar volume.

$$
\rho=\frac{M_{m}}{V_{m}}
$$

Molar Volume

What is the molar volume of liquid water and water vapor at 373 K . You may assume that the density of water is $1 \mathrm{gm} / \mathrm{cm}^{3}$.
Therefore, for liquid $\mathrm{H}_{2} \mathrm{O}$ we have

$$
V_{m}=\frac{18 \mathrm{gm} / \mathrm{mol}}{1 \mathrm{gm} / \mathrm{cm}^{3}}=18 \frac{\mathrm{~mol}}{\mathrm{~cm}^{3}}=0.018 \frac{\mathrm{~mol}}{\mathrm{~L}}
$$

For the vapor we will use the ideal gas law

$$
V_{m}=\frac{R T}{P}=\frac{(0.08206 \mathrm{Latm} / \mathrm{mol} \mathrm{~K})(373 \mathrm{~K})}{1 \mathrm{~atm}}
$$

Molar Volume

What is the molar volume of liquid water and water vapor at 373 K . You may assume that the density of water is $1 \mathrm{gm} / \mathrm{cm}^{3}$.
We find that the molar volume of water vapor is:

$$
V_{m}=30.6 \frac{\mathrm{~mol}}{\mathrm{~L}}
$$

The ratio between the vapor and liquid is:

$$
\text { Ratio }=\frac{30.6 \mathrm{~L} / \mathrm{mol}}{0.018 \mathrm{~L} / \mathrm{mol}}=1700
$$

