Units and Definitions

Units of Pressure

Force has units of Newtons

$$
F=m a\left(k g ~ m / s^{2}\right)
$$

Pressure has units of Newtons/meter ${ }^{2}$

$$
P=F / A=\left(\mathrm{kg} \mathrm{~m} / \mathrm{s}^{2} / \mathrm{m}^{2}=\mathrm{kg} / \mathrm{s}^{2} / \mathrm{m}\right)
$$

These units are also called Pascals (Pa).

$$
\begin{gathered}
1 \mathrm{bar}=10^{5} \mathrm{~Pa}=10^{5} \mathrm{~N} / \mathrm{m}^{2} . \\
1 \mathrm{~atm}=1.01325 \times 10^{5} \mathrm{~Pa}
\end{gathered}
$$

Units of Energy

Energy has units of Joules

$$
1 \mathrm{~J}=1 \mathrm{Nm}
$$

Work and energy have the same units.
Work is defined as the result of a force acting through a distance.
We can also define chemical energy in terms of the energy per mole.
$1 \mathrm{~kJ} / \mathrm{mol}$
$1 \mathrm{kcal} / \mathrm{mol}=4.184 \mathrm{~kJ} / \mathrm{mol}$

Thermal Energy

Thermal energy can be defined as RT.
Its magnitude depends on temperature.
$\mathrm{R}=8.31 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$ or $1.98 \mathrm{cal} / \mathrm{mol}-\mathrm{K}$
At $298 \mathrm{~K}, \mathrm{RT}=2476 \mathrm{~J} / \mathrm{mol}(2.476 \mathrm{~kJ} / \mathrm{mol})$
Thermal energy can also be expressed on a per molecule basis. The molecular equivalent of R is the Boltzmann constant, k_{B}.

$$
\begin{gathered}
R=N_{A} k_{B} \\
N_{A}=6.022 \times 10^{23} \mathrm{molecules} / \mathrm{mol}
\end{gathered}
$$

Converting Liter-atm to Joules

One important conversion that is frequently encountered in thermodynamics is the work in L-atm conversion to Joules. We can recall this conversion factor readily using the two definitions of the gas constant.

$$
\begin{gathered}
\mathrm{R}=8.31 \mathrm{~J} / \mathrm{mol}-\mathrm{K} \\
\mathrm{R}=0.08206 \mathrm{~L}-\mathrm{atm} / \mathrm{mol}-\mathrm{K}
\end{gathered}
$$

From these values we see that the conversion is:

$$
1 \text { L-atm = 101.325 Joules }
$$

Extensive and Intensive Variables

Extensive variables are proportional to the size of the system.
Extensive variables: volume, mass, energy

Intensive variables do not depend on the size of the system. Intensive variables: pressure, temperature, density

