What is the concentration of a dye molecule that has $\varepsilon(540 \mathrm{~nm})=65,000 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$ if it has a transmittance of 50% at 540 nm in a 1 cm pathlength cell? What is the absorbance of the sample?

Solution:

$$
\begin{array}{ll}
- & A=-\log _{10}(\% \mathrm{~T} / 100)=-\log _{10}(0.5)=0.3 \\
- & A=\varepsilon^{*} \mathrm{~d}^{*} \mathrm{c} \\
- & \varepsilon=65,000 \mathrm{M}^{-1} \mathrm{~cm}^{-1}, \mathrm{~d}=1.0 \mathrm{~cm} \\
- & \mathrm{c}=\mathrm{A} /\left(\mathrm{d}^{*} \varepsilon\right)=0.3 /\left(65,000 \mathrm{M}^{-1} \mathrm{~cm}^{-1 *} 1.0 \mathrm{~cm}\right)=4.6 \times 10^{-6} \mathrm{M}
\end{array}
$$

Concentration of dye $=$ \qquad .

Absorbance $=$ \qquad .

